* Cantinho Satkeys

Refresh History
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    Hoje às 11:15
  • cereal killa: dgtgtr e boas ferias  r4v8p 535reqef34
    18 de Agosto de 2025, 13:04
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    18 de Agosto de 2025, 11:31
  • joca34: bom dia alguem tem es cd Portugal emigrante 2025
    17 de Agosto de 2025, 05:46
  • j.s.: bom fim de semana  49E09B4F
    16 de Agosto de 2025, 20:47
  • j.s.: try65hytr a todos  4tj97u<z
    16 de Agosto de 2025, 20:47
  • Itelvo: Bom dia pessoal
    15 de Agosto de 2025, 14:02
  • FELISCUNHA: ghyt74  e bom feriado  4tj97u<z
    15 de Agosto de 2025, 11:11
  • JPratas: try65hytr A Todos  htg6454y k7y8j0
    15 de Agosto de 2025, 04:06
  • FELISCUNHA: h7t45  j.s. pela informação
    13 de Agosto de 2025, 10:20
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    13 de Agosto de 2025, 10:19
  • j.s.: 4tj97u<z 4tj97u<z
    12 de Agosto de 2025, 17:37
  • j.s.: Relembramos que por mudança de servidor, que vai ter lugar entre as 20h00 do dia 13/0/2025 e as 10h00 do dia 14/08/2025, podemos neste periodo estar em off line
    12 de Agosto de 2025, 17:36
  • j.s.: dgtgtr a todos  4tj97u<z
    12 de Agosto de 2025, 17:33
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    09 de Agosto de 2025, 11:19
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i yu7gh8 k7y8j0
    08 de Agosto de 2025, 03:48
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    07 de Agosto de 2025, 08:43
  • j.s.: dgtgtr a todos  4tj97u<z
    06 de Agosto de 2025, 16:51
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    04 de Agosto de 2025, 11:48
  • ricardo 2087: Toy
    02 de Agosto de 2025, 22:21

Autor Tópico: Handbook of Trustworthy Federated Learning  (Lida 6 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 124581
  • Karma: +0/-0
Handbook of Trustworthy Federated Learning
« em: 13 de Agosto de 2025, 10:33 »


English | 2025 | ISBN: 303158922X | 438 pages | True EPUB | 42 Mb


This handbook aims to serve as a one-stop, reliable resource, including curated surveys and expository contributions on federated learning. It covers a comprehensive range of topics, providing the reader with technical and non-technical fundamentals, applications, and extensive details of various topics. The readership spans from researchers and academics to practitioners who are deeply engaged or are starting to venture into the realms of trustworthy federated learning. First introduced in 2016, federated learning allows devices to collaboratively learn a shared model while keeping raw data localized, thus promising to protect data privacy. Since its introduction, federated learning has undergone several evolutions. Most importantly, its evolution is in response to the growing recognition that its promise of collaborative learning is inseparable from the imperatives of privacy preservation and model security.
The resource is divided into four parts. Part 1 (Security and Privacy) explores the robust defense mechanisms against targeted attacks and addresses fairness concerns, providing a multifaceted foundation for securing Federated Learning systems against evolving threats. Part 2 (Bilevel Optimization) unravels the intricacies of optimizing performance in federated settings. Part 3 (Graph and Large Language Models) addresses the challenges in training Graph Neural Networks and ensuring privacy in Federated Learning of natural language models. Part 4 (Edge Intelligence and Applications) demonstrates how Federated Learning can empower mobile applications and preserve privacy with synthetic data.

Download link

rapidgator.net:
Citar
https://rapidgator.net/file/45db6577f20f0ad2e6c871b444b08bac/zwavr.Handbook.of.Trustworthy.Federated.Learning.zip.html

nitroflare.com:
Citar
https://nitroflare.com/view/1C543BF1193D6C9/zwavr.Handbook.of.Trustworthy.Federated.Learning.zip