* Cantinho Satkeys

Refresh History
  • Radio TugaNet: boas tardes
    14 de Outubro de 2025, 13:14
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    11 de Outubro de 2025, 12:06
  • JPratas: try65hytr Pessoal  49E09B4F 2dgh8i k7y8j0 yu7gh8
    10 de Outubro de 2025, 03:59
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    08 de Outubro de 2025, 11:44
  • joca34: ola amigos boas noite alguem este cd Disco Festa Portuguesa (Ao Vivo)
    07 de Outubro de 2025, 22:45
  • pxsofficial: alguem ainda tem o Mega Pack de Filmes Infantis Dublados PT-PT
    07 de Outubro de 2025, 21:22
  • FELISCUNHA: ghyt74   49E09B4F  Votos de um santo domingo para todo o auditório  4tj97u<z
    05 de Outubro de 2025, 11:03
  • j.s.: um santo domingo  49E09B4F
    05 de Outubro de 2025, 10:52
  • j.s.: ghyt74 a todos  49E09B4F
    05 de Outubro de 2025, 10:52
  • gitzbeka: tivi mate
    04 de Outubro de 2025, 18:21
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana   4tj97u<z
    03 de Outubro de 2025, 11:42
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i k7y8j0 yu7gh8
    03 de Outubro de 2025, 03:07
  • j.s.: dgtgtr a todos  4tj97u<z
    02 de Outubro de 2025, 16:26
  • FELISCUNHA: ghyt74  49E09B4F  e bom fim de semana  4tj97u<z
    27 de Setembro de 2025, 11:08
  • Radio TugaNet: bom dia Pessoal
    27 de Setembro de 2025, 08:45
  • j.s.: tenham um excelente fim de semana  4tj97u<z
    26 de Setembro de 2025, 19:18
  • j.s.: try65hytr a todos 49E09B4F
    26 de Setembro de 2025, 19:18
  • JPratas: try65hytr Pessoal  4tj97u<z k7y8j0 yu7gh8
    26 de Setembro de 2025, 03:18
  • FELISCUNHA: henrike enviei PM
    24 de Setembro de 2025, 12:38
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    22 de Setembro de 2025, 11:43

Autor Tópico: Handbook of Trustworthy Federated Learning  (Lida 38 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 125360
  • Karma: +0/-0
Handbook of Trustworthy Federated Learning
« em: 13 de Agosto de 2025, 10:33 »


English | 2025 | ISBN: 303158922X | 438 pages | True EPUB | 42 Mb


This handbook aims to serve as a one-stop, reliable resource, including curated surveys and expository contributions on federated learning. It covers a comprehensive range of topics, providing the reader with technical and non-technical fundamentals, applications, and extensive details of various topics. The readership spans from researchers and academics to practitioners who are deeply engaged or are starting to venture into the realms of trustworthy federated learning. First introduced in 2016, federated learning allows devices to collaboratively learn a shared model while keeping raw data localized, thus promising to protect data privacy. Since its introduction, federated learning has undergone several evolutions. Most importantly, its evolution is in response to the growing recognition that its promise of collaborative learning is inseparable from the imperatives of privacy preservation and model security.
The resource is divided into four parts. Part 1 (Security and Privacy) explores the robust defense mechanisms against targeted attacks and addresses fairness concerns, providing a multifaceted foundation for securing Federated Learning systems against evolving threats. Part 2 (Bilevel Optimization) unravels the intricacies of optimizing performance in federated settings. Part 3 (Graph and Large Language Models) addresses the challenges in training Graph Neural Networks and ensuring privacy in Federated Learning of natural language models. Part 4 (Edge Intelligence and Applications) demonstrates how Federated Learning can empower mobile applications and preserve privacy with synthetic data.

Download link

rapidgator.net:
Citar
https://rapidgator.net/file/45db6577f20f0ad2e6c871b444b08bac/zwavr.Handbook.of.Trustworthy.Federated.Learning.zip.html

nitroflare.com:
Citar
https://nitroflare.com/view/1C543BF1193D6C9/zwavr.Handbook.of.Trustworthy.Federated.Learning.zip