* Cantinho Satkeys

Refresh History
  • worrierblack: 4tj97u<z
    Hoje às 03:09
  • worrierblack: hello
    Hoje às 03:09
  • worrierblack: hello
    Hoje às 03:09
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    08 de Fevereiro de 2026, 11:39
  • j.s.: tenham um bom fim de semana,   49E09B4F 49E09B4F
    07 de Fevereiro de 2026, 14:31
  • j.s.: dgtgtr a todos  49E09B4F
    07 de Fevereiro de 2026, 14:30
  • FELISCUNHA: ghyt74  pessoall 49E09B4F
    06 de Fevereiro de 2026, 12:00
  • JPratas: try65hytr A Todos  4tj97u<z  2dgh8i k7y8j0 classic
    06 de Fevereiro de 2026, 05:17
  • joca34: ola amigos alguem tem este cd Ti Maria da Peida -  Mãe negra
    05 de Fevereiro de 2026, 16:09
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    03 de Fevereiro de 2026, 11:46
  • Robi80g: CIAO A TUTTI
    03 de Fevereiro de 2026, 10:53
  • Robi80g: THE SWAP FILM WALT DISNEY
    03 de Fevereiro de 2026, 10:50
  • Robi80g: SWAP
    03 de Fevereiro de 2026, 10:50
  • j.s.: dgtgtr a todos  49E09B4F
    02 de Fevereiro de 2026, 16:50
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    02 de Fevereiro de 2026, 11:41
  • j.s.: try65hytr a todos  49E09B4F
    29 de Janeiro de 2026, 21:01
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    26 de Janeiro de 2026, 11:00
  • espioca: avast vpn
    26 de Janeiro de 2026, 06:27
  • j.s.: dgtgtr  todos  49E09B4F
    25 de Janeiro de 2026, 15:36
  • Radio TugaNet: Bom Dia Gente Boa
    25 de Janeiro de 2026, 10:18

Autor Tópico: Doing more with Python Numpy  (Lida 182 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Doing more with Python Numpy
« em: 22 de Junho de 2021, 16:38 »

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 33 lectures (4h 17m) | Size: 1.2 GB
Tap full potential of Numpy Library by putting Arrays, Numpy's functions and Broadcasting to work

What you'll learn:
Develop understanding of how Arrays work and what advantages they offer over other Data Structures
Use Arrays as Data containers for common data operations
Compare time performance of your process codes versus a suitable Numpy function
In-depth understanding to use numpy's where() and select() functions to replace conventionally used methods
Apply Array Broadcasting in your line of work to replace Nested For loops and Cross-join operations

Requirements
Basic knowledge of Python (including Data Types and Structures, Control Flow, Functions, etc.)
Basic knowledge of Pandas

Description
The course covers three key areas in Numpy:

Numpy Arrays as Data Structures - Developing an in-depth understanding along the lines of:

Intuition of Arrays as Data Containers

Visualizing 2D/3D and higher dimensional Arrays

Array Indexing and Slicing - 2D/3D Arrays

Performing basic/advanced operations using Numpy Arrays

Useful Numpy Functions - Basic to Advanced usage of the below Numpy functions and how they perform compared to their counterpart methods

numpy where() function

Comparison with Apply + Lambda

Performance on Large DataFrames

Varied uses in new variable creation

numpy select() function

Apply conditions on single and multiple numeric variables

Apply conditions on categorical variable

Array Broadcasting - Developing an intuition of "How Arrays with dissimilar shapes interact" and how to put it to use

Intuition of Broadcasting concept on 2D/3D Arrays

Under what scenarios can we use Broadcasting to replace some of the computationally expensive methods like For loops and Cross-join Operations, etc. especially when working on a large Datasets

The course also covers the topic - "How to time your codes/processes", which will equip you to:

Track time taken by any code block (using Two different methods) and also apply to your own processes/codes

Prepare for the upcoming Chapter "Useful Numpy Functions", where we not only compare performance of Numpy functions with other conventionally used methods but also monitor how they perform on large Datasets

Who this course is for
Anyone who wants to learn in more depth, about Numpy Arrays and Array Broadcasting and put them to practical use


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction