* Cantinho Satkeys

Refresh History
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 yu7gh8
    16 de Janeiro de 2026, 04:50
  • j.s.: try65hytr a todos  49E09B4F 49E09B4F
    15 de Janeiro de 2026, 19:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Janeiro de 2026, 11:51
  • j.s.: try65hytr a todos
    13 de Janeiro de 2026, 19:09
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    13 de Janeiro de 2026, 10:48
  • cereal killa: 2dgh8i  1j6iv5
    12 de Janeiro de 2026, 20:15
  • cereal killa: try65hytr pessoal  2dgh8i  classic
    12 de Janeiro de 2026, 20:00
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    10 de Janeiro de 2026, 12:21
  • asakzt: Managing database versions with Liquibase and Spring Boot
    10 de Janeiro de 2026, 11:35
  • tita: Musica Box Pop
    09 de Janeiro de 2026, 12:18
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    08 de Janeiro de 2026, 11:01
  • j.s.: try65hytr a todos  49E09B4F
    07 de Janeiro de 2026, 20:37
  • TWT: Interaction Design Specialization
    07 de Janeiro de 2026, 07:38
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    05 de Janeiro de 2026, 10:33
  • Alberto: The Alan Parsons Project
    05 de Janeiro de 2026, 05:29
  • Alberto: The Alan Parsons Project
    05 de Janeiro de 2026, 05:29
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    03 de Janeiro de 2026, 12:26
  • JPratas: try65hytr Pessoal Continuação de
    02 de Janeiro de 2026, 19:42
  • sacana10: Tenham Um Feliz Ano De 2026
    01 de Janeiro de 2026, 12:35
  • FELISCUNHA: ghyt74   49E09B4F  e bom ano  4tj97u<z
    01 de Janeiro de 2026, 10:28

Autor Tópico: Doing more with Python Numpy  (Lida 157 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Doing more with Python Numpy
« em: 22 de Junho de 2021, 16:38 »

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 33 lectures (4h 17m) | Size: 1.2 GB
Tap full potential of Numpy Library by putting Arrays, Numpy's functions and Broadcasting to work

What you'll learn:
Develop understanding of how Arrays work and what advantages they offer over other Data Structures
Use Arrays as Data containers for common data operations
Compare time performance of your process codes versus a suitable Numpy function
In-depth understanding to use numpy's where() and select() functions to replace conventionally used methods
Apply Array Broadcasting in your line of work to replace Nested For loops and Cross-join operations

Requirements
Basic knowledge of Python (including Data Types and Structures, Control Flow, Functions, etc.)
Basic knowledge of Pandas

Description
The course covers three key areas in Numpy:

Numpy Arrays as Data Structures - Developing an in-depth understanding along the lines of:

Intuition of Arrays as Data Containers

Visualizing 2D/3D and higher dimensional Arrays

Array Indexing and Slicing - 2D/3D Arrays

Performing basic/advanced operations using Numpy Arrays

Useful Numpy Functions - Basic to Advanced usage of the below Numpy functions and how they perform compared to their counterpart methods

numpy where() function

Comparison with Apply + Lambda

Performance on Large DataFrames

Varied uses in new variable creation

numpy select() function

Apply conditions on single and multiple numeric variables

Apply conditions on categorical variable

Array Broadcasting - Developing an intuition of "How Arrays with dissimilar shapes interact" and how to put it to use

Intuition of Broadcasting concept on 2D/3D Arrays

Under what scenarios can we use Broadcasting to replace some of the computationally expensive methods like For loops and Cross-join Operations, etc. especially when working on a large Datasets

The course also covers the topic - "How to time your codes/processes", which will equip you to:

Track time taken by any code block (using Two different methods) and also apply to your own processes/codes

Prepare for the upcoming Chapter "Useful Numpy Functions", where we not only compare performance of Numpy functions with other conventionally used methods but also monitor how they perform on large Datasets

Who this course is for
Anyone who wants to learn in more depth, about Numpy Arrays and Array Broadcasting and put them to practical use


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction