* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votosde um santo domingo para todo o auditório  4tj97u<z
    24 de Novembro de 2024, 11:06
  • j.s.: bom fim de semana  49E09B4F
    23 de Novembro de 2024, 21:01
  • j.s.: try65hytr a todos
    23 de Novembro de 2024, 21:01
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana
    23 de Novembro de 2024, 12:27
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    22 de Novembro de 2024, 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10

Autor Tópico: Doing more with Python Numpy  (Lida 53 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117576
  • Karma: +0/-0
Doing more with Python Numpy
« em: 22 de Junho de 2021, 16:38 »

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 33 lectures (4h 17m) | Size: 1.2 GB
Tap full potential of Numpy Library by putting Arrays, Numpy's functions and Broadcasting to work

What you'll learn:
Develop understanding of how Arrays work and what advantages they offer over other Data Structures
Use Arrays as Data containers for common data operations
Compare time performance of your process codes versus a suitable Numpy function
In-depth understanding to use numpy's where() and select() functions to replace conventionally used methods
Apply Array Broadcasting in your line of work to replace Nested For loops and Cross-join operations

Requirements
Basic knowledge of Python (including Data Types and Structures, Control Flow, Functions, etc.)
Basic knowledge of Pandas

Description
The course covers three key areas in Numpy:

Numpy Arrays as Data Structures - Developing an in-depth understanding along the lines of:

Intuition of Arrays as Data Containers

Visualizing 2D/3D and higher dimensional Arrays

Array Indexing and Slicing - 2D/3D Arrays

Performing basic/advanced operations using Numpy Arrays

Useful Numpy Functions - Basic to Advanced usage of the below Numpy functions and how they perform compared to their counterpart methods

numpy where() function

Comparison with Apply + Lambda

Performance on Large DataFrames

Varied uses in new variable creation

numpy select() function

Apply conditions on single and multiple numeric variables

Apply conditions on categorical variable

Array Broadcasting - Developing an intuition of "How Arrays with dissimilar shapes interact" and how to put it to use

Intuition of Broadcasting concept on 2D/3D Arrays

Under what scenarios can we use Broadcasting to replace some of the computationally expensive methods like For loops and Cross-join Operations, etc. especially when working on a large Datasets

The course also covers the topic - "How to time your codes/processes", which will equip you to:

Track time taken by any code block (using Two different methods) and also apply to your own processes/codes

Prepare for the upcoming Chapter "Useful Numpy Functions", where we not only compare performance of Numpy functions with other conventionally used methods but also monitor how they perform on large Datasets

Who this course is for
Anyone who wants to learn in more depth, about Numpy Arrays and Array Broadcasting and put them to practical use


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction