* Cantinho Satkeys

Refresh History
  • j.s.: try65hytr a todos
    13 de Janeiro de 2026, 19:09
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    13 de Janeiro de 2026, 10:48
  • cereal killa: 2dgh8i  1j6iv5
    12 de Janeiro de 2026, 20:15
  • cereal killa: try65hytr pessoal  2dgh8i  classic
    12 de Janeiro de 2026, 20:00
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    10 de Janeiro de 2026, 12:21
  • asakzt: Managing database versions with Liquibase and Spring Boot
    10 de Janeiro de 2026, 11:35
  • tita: Musica Box Pop
    09 de Janeiro de 2026, 12:18
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    08 de Janeiro de 2026, 11:01
  • j.s.: try65hytr a todos  49E09B4F
    07 de Janeiro de 2026, 20:37
  • TWT: Interaction Design Specialization
    07 de Janeiro de 2026, 07:38
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    05 de Janeiro de 2026, 10:33
  • Alberto: The Alan Parsons Project
    05 de Janeiro de 2026, 05:29
  • Alberto: The Alan Parsons Project
    05 de Janeiro de 2026, 05:29
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    03 de Janeiro de 2026, 12:26
  • JPratas: try65hytr Pessoal Continuação de
    02 de Janeiro de 2026, 19:42
  • sacana10: Tenham Um Feliz Ano De 2026
    01 de Janeiro de 2026, 12:35
  • FELISCUNHA: ghyt74   49E09B4F  e bom ano  4tj97u<z
    01 de Janeiro de 2026, 10:28
  • cereal killa:
    31 de Dezembro de 2025, 19:38
  • JPratas:
    31 de Dezembro de 2025, 18:41
  • j.s.: tenham um excelente ano de 2026 43e5r6 49E09B4F
    31 de Dezembro de 2025, 17:18

Autor Tópico: Applied Statistics & Probability for Data Science Python  (Lida 26 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online WAREZBLOG

  • Moderador Global
  • ***
  • Mensagens: 1675
  • Karma: +0/-0
Applied Statistics & Probability for Data Science Python
« em: 31 de Dezembro de 2025, 03:12 »

Free Download Applied Statistics & Probability for Data Science Python
Published 12/2025
Created by Rahul kaundal
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz, 2 Ch
Level: Beginner | Genre: eLearning | Language: English | Duration: 44 Lectures ( 2h 8m ) | Size: 1.48 GB

Solve Real Problems with Data: An In-Depth Guide to Statistics, Probability, Hypothesis testing using Python & Excel
What you'll learn
Master Foundational Probability & Statistics
Perform Robust Data Analysis with Python
Communicate Data-Driven Insights
Learners will gain hands-on skills for manipulating data and preparing it for deeper analysis
Learn Descriptive Statistics, Probability and Distributions indepth with industry use cases
Requirements
No programming experience required
Description
This course provides a comprehensive exploration of how statistical methods and data analytics drive decision-making in real world scenario.  Designed for students and professionals with basic knowledge of data analysis, it bridges statistical theory with practical applications to enhance customer insights, and improve operational efficiency.Participants will master foundational to advanced statistical concepts : including probability distributions, hypothesis testing, and inferential statistics, and apply them to real-world challenges such as call pattern analysis,  performance monitoring, and customer churn prediction.The course covers essential techniques like central tendency and dispersion analysis, data visualization, and predictive modeling using tools like Python and Excel. Each method is linked to industry-specific use cases, such as detecting anomalies, segmenting users, and forecasting traffic.Learners will also dive into regression analysis, gaining hands-on experience in interpreting datasets, mitigating biases, and communicating data-driven insights effectively.By the end of the course, participants will be equipped to harness statistical analytics for smarter strategies, from optimizing 5G networks to improving customer experience through data.After completing this course:-1. Learners should be able to explain fundamental statistical concepts (data types, central tendency, dispersion) and apply them to analyze datasets using Excel and Python.2. Learners should be able to manipulate and visualize telecom data in Python, applying loops, conditional statements, and basic plotting techniques to derive insights on performance.3. Learners should be able to apply probability distributions (normal, binomial, Poisson) to model telecom scenarios like call drops, service reliability, and customer churn.4. Learners should be able to use Bayes' theorem and hypothesis testing (t-tests) to make data-driven decisions in telecom, such as predicting churn or comparing network speeds.5. Learners should be able to calculate and interpret variability metrics (variance, standard deviation) to assess network stability and customer usage patterns.6. Learners should be able to design effective data visualizations to communicate telecom insights, including call duration trends and network anomalies.After completing this course, learners should be able to solve real-world problems by integrating statistical analysis, Python programming, and predictive modeling techniques
Who this course is for
Anyone who likes to understand, visualize data to get insights and create value using some easy tools like python
Aspiring Data Scientists & Analysts
Homepage
Código: [Seleccione]
https://www.udemy.com/course/applied-statistics-probability-for-data-science-python/
Recommend Download Link Hight Speed | Please Say Thanks Keep Topic Live
DDownload
thnbp.Applied.Statistics..Probability.for.Data.Science.Python.part1.rar
thnbp.Applied.Statistics..Probability.for.Data.Science.Python.part2.rar
Rapidgator
thnbp.Applied.Statistics..Probability.for.Data.Science.Python.part1.rar.html
thnbp.Applied.Statistics..Probability.for.Data.Science.Python.part2.rar.html
AlfaFile
thnbp.Applied.Statistics..Probability.for.Data.Science.Python.part1.rar
thnbp.Applied.Statistics..Probability.for.Data.Science.Python.part2.rar

https://turbobit.net/1fnd8gjhi9kg/thnbp.Applied.Statistics..Probability.for.Data.Science.Python.part1.rar.html
https://turbobit.net/9kc401t03zvk/thnbp.Applied.Statistics..Probability.for.Data.Science.Python.part2.rar.html
FreeDL
thnbp.Applied.Statistics..Probability.for.Data.Science.Python.part1.rar.html
thnbp.Applied.Statistics..Probability.for.Data.Science.Python.part2.rar.html
No Password  - Links are Interchangeable