* Cantinho Satkeys

Refresh History
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    01 de Setembro de 2025, 11:36
  • j.s.: de regresso a casa  535reqef34
    31 de Agosto de 2025, 20:21
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Agosto de 2025, 20:21
  • FELISCUNHA: ghyt74   49E09B4e bom fim de semana  4tj97u<z
    30 de Agosto de 2025, 11:48
  • henrike: try65hytr     k7y8j0
    29 de Agosto de 2025, 21:52
  • JPratas: try65hytr Pessoal 4tj97u<z 2dgh8i classic k7y8j0
    29 de Agosto de 2025, 03:57
  • cereal killa: dgtgtr pessoal  2dgh8i
    27 de Agosto de 2025, 12:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    24 de Agosto de 2025, 11:26
  • janstu10: reed
    24 de Agosto de 2025, 10:52
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    23 de Agosto de 2025, 12:03
  • joca34: cd Vem dançar Kuduro Summer 2025
    22 de Agosto de 2025, 23:07
  • joca34: cd Kizomba Mix 2025
    22 de Agosto de 2025, 23:06
  • JPratas: try65hytr A Todos e Boas Férias 4tj97u<z htg6454y k7y8j0
    22 de Agosto de 2025, 04:22
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    21 de Agosto de 2025, 11:15
  • cereal killa: dgtgtr e boas ferias  r4v8p 535reqef34
    18 de Agosto de 2025, 13:04
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    18 de Agosto de 2025, 11:31
  • joca34: bom dia alguem tem es cd Portugal emigrante 2025
    17 de Agosto de 2025, 05:46
  • j.s.: bom fim de semana  49E09B4F
    16 de Agosto de 2025, 20:47
  • j.s.: try65hytr a todos  4tj97u<z
    16 de Agosto de 2025, 20:47
  • Itelvo: Bom dia pessoal
    15 de Agosto de 2025, 14:02

Autor Tópico: End-To-End Small Object Detection Project  (Lida 50 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 124630
  • Karma: +0/-0
End-To-End Small Object Detection Project
« em: 21 de Maio de 2025, 12:17 »


Published 5/2025
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 650.33 MB | Duration: 1h 49m

(From Data Collection to Deployment & Customer Handover)


What you'll learn
Build a real-world object detector for cattle ticks/flies using YOLO/PyTorch from scratch.
Collect, annotate & preprocess datasets for small object detection in agriculture.
Train, evaluate & optimize models using metrics like mAP and precision.
Deploy a user-friendly AI app (Flask/FastAPI) and hand over deliverables to clients.
Prepare the project report to the cusotmer
Requirements
•Basic Python knowledge (loops, functions). No prior AI experience needed-we'll start from the basics! A Google account (for free GPU via Colab).
Description
Transform raw images into a production-ready AI solution with this comprehensive project-based course. You'll develop a complete object detection system for identifying cattle parasites - a critical challenge in livestock management. Using industry-standard YOLO models with PyTorch, we'll guide you through the entire development lifecycle from initial data collection to final deployment.Course Value Proposition:Practical, hands-on approach focused on delivering a working solutionAgriculture-specific implementation addressing real-world problemsProfessional workflow covering both technical implementation and client deliveryDeployment-ready skills that go beyond academic exercisesKey Learning Components:Data Pipeline Development:Collecting and annotating agricultural image datasetsPreprocessing techniques for small object detectionDataset augmentation and balancing methodsModel Development:YOLO architecture fundamentalsTransfer learning with pretrained weightsPerformance evaluation using industry metricsProduction Implementation:Building a FastAPI web interfaceCloud deployment optionsCreating client documentationTarget Audience:This course is designed for Python developers seeking practical AI implementation skills, agriculture professionals exploring technology solutions, and students looking to build portfolio-worthy projects. Basic Python knowledge is recommended, but no prior AI experience is required as we cover all necessary fundamentals.Technical Stack:YOLOv5/YOLOv8 (Ultralytics implementation)PyTorch frameworkFastAPI for web servicesRoboflow for data annotationGoogle Colab for GPU accelerationBy course completion, you'll have a fully functional object detection system and the skills to adapt this solution to other agricultural or small-object detection use cases. The project-based approach ensures you gain practical experience that translates directly to professional applications.
Overview
Section 1: Dection Project Introduciton
Lecture 1 Lecture 1 Project Introuduction
Section 2: Data Capturing Equipment Introudction
Lecture 2 Lecture 2 Data Collection Device Selection
Section 3: Section 2 Data Set Prepration
Lecture 3 Lecture 3 Data Collection and Preprocessing for ML
Lecture 4 Lecture 4 Image Extraction Practical Code
Lecture 5 Lecture 5 Preparing Datasets for Cattle Tick DetectionTask
Lecture 6 Lecture 6 Hands-on Data preparation using RoboFlow
Section 4: Section 4 Detection Models
Lecture 7 Lecture 7: Detection Models Introudction
Lecture 8 Lecture 8: YOLOv8 With Goolge Colab: Proactical Object Dection
Lecture 9 Lecture 9 Hands on Proactical Code
Section 5: Section 4 : Model Deployment
Lecture 10 Lecture 10: Tick Detection Web App - Frontend Architecture
Lecture 11 Lecture 11 UI Design
Section 6: Pacakge Deliver to Customer
Lecture 12 Lecture 12 Package Introuduction
Lecture 13 Lecture 13 : echnical Report & Customer Guide: Livestock Tick Detection System
Python devs who want to break into AI Computer Vision with a hands-on project.,Agriculture professionals exploring AI solutions for pest/livestock monitoring.,AI students tired of theory-ready to build & deploy a real-world model.,Freelancers looking to add object detection skills .
Screenshots


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/9e840905c445da745fcbfc39e036f41d/zeddx.EndToEnd.Small.Object.Detection.Project.rar.html

nitroflare.com:
Citar
https://nitroflare.com/view/9444030F69F7C3A/zeddx.EndToEnd.Small.Object.Detection.Project.rar