* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    02 de Novembro de 2025, 11:58
  • j.s.: tenham um excelente domingo  49E09B4F
    02 de Novembro de 2025, 11:27
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2025, 11:26
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    01 de Novembro de 2025, 11:04
  • JPratas: try65hytr Pessoal  2dgh8i classic k7y8j0 yu7gh8
    31 de Outubro de 2025, 04:19
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2025, 18:51
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    30 de Outubro de 2025, 11:38
  • haruri: Delta
    29 de Outubro de 2025, 07:54
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    25 de Outubro de 2025, 12:03
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 yu7gh8
    24 de Outubro de 2025, 03:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    19 de Outubro de 2025, 11:16
  • j.s.: tenham um excelente domingo  43e5r6 49E09B4F
    19 de Outubro de 2025, 10:32
  • j.s.: ghyt74 a todos  4tj97u<z
    19 de Outubro de 2025, 10:32
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    17 de Outubro de 2025, 12:08
  • JPratas: try65hytr Pessoal  4tj97u<z htg6454y k7y8j0
    17 de Outubro de 2025, 03:34
  • j.s.: dgtgtr a todos  4tj97u<z
    15 de Outubro de 2025, 15:12
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    15 de Outubro de 2025, 11:56
  • Radio TugaNet: boas tardes
    14 de Outubro de 2025, 13:14
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    11 de Outubro de 2025, 12:06
  • JPratas: try65hytr Pessoal  49E09B4F 2dgh8i k7y8j0 yu7gh8
    10 de Outubro de 2025, 03:59

Autor Tópico: Causal AI, Video Edition  (Lida 79 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 126153
  • Karma: +0/-0
Causal AI, Video Edition
« em: 20 de Maio de 2025, 11:06 »


Published: 2/2025
Duration: 15h 40m | Video: .MP4, 1920x1080 30 fps | Audio: AAC, 44.1kHz, 2ch | Size: 2.29 GB
Genre: eLearning | Language: English


In Video Editions the narrator reads the book while the content, figures, code listings, diagrams, and text appear on the screen. Like an audiobook that you can also watch as a video.
Build AI models that can reliably deliver causal inference.
How do you know what might have happened, had you done things differently? Causal AI gives you the insight you need to make predictions and control outcomes based on causal relationships instead of pure correlation, so you can make precise and timely interventions. Causal AI is a practical introduction to building AI models that can reason about causality.
In Causal AI you will learn how to
Build causal reinforcement learning algorithms
Implement causal inference with modern probabilistic machine tools such as PyTorch and Pyro
Compare and contrast statistical and econometric methods for causal inference
Set up algorithms for attribution, credit assignment, and explanation
Convert domain expertise into explainable causal models
Author Robert Osazuwa Ness, a leading researcher in causal AI at Microsoft Research, brings his unique expertise to this cutting-edge guide. His clear, code-first approach explains essential details of causal machine learning that are hidden in academic papers. Everything you learn can be easily and effectively applied to industry challenges, from building explainable causal models to predicting counterfactual outcomes.
About the Technology
Traditional ML models can't answer causal questions like, "Why did that happen?" or, "What factors should I change to get a particular outcome?" This book blends advanced statistical methods, computational techniques, and new algorithms to create machine learning systems that automate the process of causal inference.
About the Book
Causal AI introduces the tools, techniques, and algorithms of causal reasoning for machine learning. This unique book masterfully blends Bayesian and probabilistic approaches to causal inference with practical hands-on examples in Python. Along the way, you'll learn to integrate causal assumptions into deep learning architectures, including reinforcement learning and large language models. You'll also use PyTorch, Pyro, and other ML libraries to scale up causal inference.
What's Inside
End-to-end causal inference with DoWhy
Deep Bayesian causal generative AI models
A code-first tour of the do-calculus and Pearl's causal hierarchy
Code for fine-tuning causal large language models
Screenshots


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/1611d85121ae3094d204bbbff22cba2f/iwcru.Causal.AI.Video.Edition.part1.rar.html
https://rapidgator.net/file/e7b315aa1f691f7024595b7bb4db39de/iwcru.Causal.AI.Video.Edition.part2.rar.html
https://rapidgator.net/file/c667691db0c07946f152d616f63d2da7/iwcru.Causal.AI.Video.Edition.part3.rar.html

nitroflare.com:
Citar
https://nitroflare.com/view/09E213D2A96B4E0/iwcru.Causal.AI.Video.Edition.part1.rar
https://nitroflare.com/view/5AAF8FB16376A2C/iwcru.Causal.AI.Video.Edition.part2.rar
https://nitroflare.com/view/C602ADB4843E157/iwcru.Causal.AI.Video.Edition.part3.rar