* Cantinho Satkeys

Refresh History
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    01 de Setembro de 2025, 11:36
  • j.s.: de regresso a casa  535reqef34
    31 de Agosto de 2025, 20:21
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Agosto de 2025, 20:21
  • FELISCUNHA: ghyt74   49E09B4e bom fim de semana  4tj97u<z
    30 de Agosto de 2025, 11:48
  • henrike: try65hytr     k7y8j0
    29 de Agosto de 2025, 21:52
  • JPratas: try65hytr Pessoal 4tj97u<z 2dgh8i classic k7y8j0
    29 de Agosto de 2025, 03:57
  • cereal killa: dgtgtr pessoal  2dgh8i
    27 de Agosto de 2025, 12:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    24 de Agosto de 2025, 11:26
  • janstu10: reed
    24 de Agosto de 2025, 10:52
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    23 de Agosto de 2025, 12:03
  • joca34: cd Vem dançar Kuduro Summer 2025
    22 de Agosto de 2025, 23:07
  • joca34: cd Kizomba Mix 2025
    22 de Agosto de 2025, 23:06
  • JPratas: try65hytr A Todos e Boas Férias 4tj97u<z htg6454y k7y8j0
    22 de Agosto de 2025, 04:22
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    21 de Agosto de 2025, 11:15
  • cereal killa: dgtgtr e boas ferias  r4v8p 535reqef34
    18 de Agosto de 2025, 13:04
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    18 de Agosto de 2025, 11:31
  • joca34: bom dia alguem tem es cd Portugal emigrante 2025
    17 de Agosto de 2025, 05:46
  • j.s.: bom fim de semana  49E09B4F
    16 de Agosto de 2025, 20:47
  • j.s.: try65hytr a todos  4tj97u<z
    16 de Agosto de 2025, 20:47
  • Itelvo: Bom dia pessoal
    15 de Agosto de 2025, 14:02

Autor Tópico: Land Cover Classification in Google Earth Engine  (Lida 57 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 124630
  • Karma: +0/-0
Land Cover Classification in Google Earth Engine
« em: 09 de Maio de 2025, 12:05 »
Land Cover Classification in Google Earth Engine


Published 5/2025
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 1h 9m | Size: 1 GB

Start applying machine learning for remote sensing


What you'll learn
Get Theoretical Knowledge of Random Forest Algorithm
Proficiency in Google Earth Engine
Training Data Development
Land Cover Mapping
Accuracy Assessment
Requirements
A free Google Earth Engine account (enrollment instructions provided)
Access to a computer with a reliable internet connection
Description
Welcome to an in-depth and rigorously structured course designed to equip learners with the expertise to perform land cover classification using Random Forest within Google Earth Engine (GEE). This course is tailored for students, geospatial professionals, environmental scientists, and researchers seeking to harness satellite imagery for precise land cover mapping. Through a comprehensive case study in Çumra District, Konya, Türkiye, participants will develop proficiency in classifying land into four categories-Water, Vegetation, Urban, and Bare Land-utilizing state-of-the-art machine learning techniques and cloud-based geospatial platforms. No prior experience in coding or remote sensing is required, as this course provides a systematic progression from foundational concepts to advanced applications, ensuring accessibility for beginners and value for experienced learners.Upon completion, you will produce a professional-grade land cover map of Çumra District, demonstrating mastery of Random Forest and GEE. You will gain the ability to preprocess satellite imagery, develop and validate machine learning models, and interpret geospatial data, skills highly valued in academia and industries such as environmental management, urban planning, and agricultural monitoring.Embark on a transformative learning journey to master land cover classification with Random Forest in Google Earth Engine. This course offers a unique opportunity to develop cutting-edge skills through a practical, real-world project in Çumra District, equipping you to address global environmental challenges. Enroll now to gain expertise in geospatial analysis, contribute to sustainable development. Begin your journey today and unlock the potential of satellite imagery to map and understand our world.
Who this course is for
Undergraduate and graduate students in environmental science, geography, or related fields seeking practical geospatial skills
Geospatial professionals aiming to integrate machine learning and GEE into their workflows.
Researchers and analysts interested in leveraging satellite imagery for environmental and urban studies
Homepage:
Código: [Seleccione]
https://www.udemy.com/course/land-cover-classification-in-google-earth-engine/
Screenshots


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/270f193100a13fcc4f40125d8494cf86/glrrb.Land.Cover.Classification.in.Google.Earth.Engine.part1.rar.html
https://rapidgator.net/file/004a327bbc98a61254a964471ca04a48/glrrb.Land.Cover.Classification.in.Google.Earth.Engine.part2.rar.html

nitroflare.com:
Citar
https://nitroflare.com/view/2C8E02859B4AD56/glrrb.Land.Cover.Classification.in.Google.Earth.Engine.part1.rar
https://nitroflare.com/view/77F7D2E24A10FEB/glrrb.Land.Cover.Classification.in.Google.Earth.Engine.part2.rar