* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    02 de Novembro de 2025, 11:58
  • j.s.: tenham um excelente domingo  49E09B4F
    02 de Novembro de 2025, 11:27
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2025, 11:26
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    01 de Novembro de 2025, 11:04
  • JPratas: try65hytr Pessoal  2dgh8i classic k7y8j0 yu7gh8
    31 de Outubro de 2025, 04:19
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2025, 18:51
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    30 de Outubro de 2025, 11:38
  • haruri: Delta
    29 de Outubro de 2025, 07:54
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    25 de Outubro de 2025, 12:03
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 yu7gh8
    24 de Outubro de 2025, 03:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    19 de Outubro de 2025, 11:16
  • j.s.: tenham um excelente domingo  43e5r6 49E09B4F
    19 de Outubro de 2025, 10:32
  • j.s.: ghyt74 a todos  4tj97u<z
    19 de Outubro de 2025, 10:32
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    17 de Outubro de 2025, 12:08
  • JPratas: try65hytr Pessoal  4tj97u<z htg6454y k7y8j0
    17 de Outubro de 2025, 03:34
  • j.s.: dgtgtr a todos  4tj97u<z
    15 de Outubro de 2025, 15:12
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    15 de Outubro de 2025, 11:56
  • Radio TugaNet: boas tardes
    14 de Outubro de 2025, 13:14
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    11 de Outubro de 2025, 12:06
  • JPratas: try65hytr Pessoal  49E09B4F 2dgh8i k7y8j0 yu7gh8
    10 de Outubro de 2025, 03:59

Autor Tópico: Introduction to Artificial Intelligence 2025  (Lida 76 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 126078
  • Karma: +0/-0
Introduction to Artificial Intelligence 2025
« em: 30 de Abril de 2025, 16:11 »
Introduction to Artificial Intelligence 2025


Published 4/2025
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 3h 3m | Size: 1.04 GB

Problem Solving, Planning, Searching, Knowledge Base Agents, Intelligent Agents, Planning and Expert Systems


What you'll learn
Formulate a problem as a state space search method and its solution using various AI techniques
Apply appropriate searching techniques to solve a real-world problem
Develop various game playing strategies to solve real world adversarial search problems
Represent various knowledge representation techniques to solve complex AI problems
Design an expert system to implement advance techniques in Artificial Intelligence
Requirements
Nil
Description
This course offers a comprehensive introduction to the field of Artificial Intelligence, tailored for beginners and enthusiasts eager to explore how intelligent systems are designed and function. Structured across five focused sections, the course blends foundational theory with practical insights, covering essential topics such as AI techniques, search algorithms, intelligent agents, knowledge representation, and expert systems. In Section 1: Introduction to AI, you'll explore the fundamentals of AI including various techniques, models, and problem-solving approaches. This section covers how AI formulates problems, identifies problem types, and navigates the problem space using classic examples like the Tic-Tac-Toe game, the Missionaries and Cannibals puzzle, and the Travelling Salesman Problem.Section 2: Basic Introduction to Data Structures and Search Algorithms focuses on the core data structures such as stacks, queues, trees, and graphs. You'll learn how AI uses these structures in problem-solving, along with search techniques like Breadth-First Search, Depth-First Search, and informed strategies including A* and Best-First Search. It also covers control strategies and agent-based search models.In Section 3: Adversarial Search Problems and Intelligent Agents, you'll study how AI handles competitive scenarios using game theory. Key concepts include the Minimax algorithm, Alpha-Beta Pruning, and Constraint Satisfaction Problems (CSPs). Additionally, this section explores intelligent agents-how they reason, make decisions, and operate in various environments.Section 4: Knowledge Representation dives into how AI systems store, structure, and infer knowledge. Topics include propositional and predicate logic, inference mechanisms, semantic networks, unification algorithms, and reasoning with uncertainty. You'll also learn about different ways to represent knowledge using rules, frames, and logic.Lastly, Section 5: Planning and Expert Systems introduces planning techniques and machine learning fundamentals. You'll explore planning problems, means-ends analysis, and the Blocks World scenario. This section also presents the basics of expert systems, including their architecture and how they simulate human decision-making.This course is ideal for students, aspiring AI developers, and anyone curious about how machines can think, learn, and act intelligently. By the end, you'll have a strong foundation to explore more advanced AI topics or pursue practical projects in the field.
Who this course is for
Beginners and Intermediate
Homepage:
Código: [Seleccione]
https://www.udemy.com/course/introduction-to-artificial-intelligence-p/
Screenshots


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/f598ed01c268f8a7c9a75d648ab18c21/oqznj.Introduction.to.Artificial.Intelligence.2025.part1.rar.html
https://rapidgator.net/file/d0f656a717e1183cfdfb5681c63a48de/oqznj.Introduction.to.Artificial.Intelligence.2025.part2.rar.html

nitroflare.com:
Citar
https://nitroflare.com/view/91456865BC082DB/oqznj.Introduction.to.Artificial.Intelligence.2025.part1.rar
https://nitroflare.com/view/C22DACA015FDCFC/oqznj.Introduction.to.Artificial.Intelligence.2025.part2.rar