* Cantinho Satkeys

Refresh History
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    01 de Setembro de 2025, 11:36
  • j.s.: de regresso a casa  535reqef34
    31 de Agosto de 2025, 20:21
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Agosto de 2025, 20:21
  • FELISCUNHA: ghyt74   49E09B4e bom fim de semana  4tj97u<z
    30 de Agosto de 2025, 11:48
  • henrike: try65hytr     k7y8j0
    29 de Agosto de 2025, 21:52
  • JPratas: try65hytr Pessoal 4tj97u<z 2dgh8i classic k7y8j0
    29 de Agosto de 2025, 03:57
  • cereal killa: dgtgtr pessoal  2dgh8i
    27 de Agosto de 2025, 12:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    24 de Agosto de 2025, 11:26
  • janstu10: reed
    24 de Agosto de 2025, 10:52
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    23 de Agosto de 2025, 12:03
  • joca34: cd Vem dançar Kuduro Summer 2025
    22 de Agosto de 2025, 23:07
  • joca34: cd Kizomba Mix 2025
    22 de Agosto de 2025, 23:06
  • JPratas: try65hytr A Todos e Boas Férias 4tj97u<z htg6454y k7y8j0
    22 de Agosto de 2025, 04:22
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    21 de Agosto de 2025, 11:15
  • cereal killa: dgtgtr e boas ferias  r4v8p 535reqef34
    18 de Agosto de 2025, 13:04
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    18 de Agosto de 2025, 11:31
  • joca34: bom dia alguem tem es cd Portugal emigrante 2025
    17 de Agosto de 2025, 05:46
  • j.s.: bom fim de semana  49E09B4F
    16 de Agosto de 2025, 20:47
  • j.s.: try65hytr a todos  4tj97u<z
    16 de Agosto de 2025, 20:47
  • Itelvo: Bom dia pessoal
    15 de Agosto de 2025, 14:02

Autor Tópico: Introduction to Triton Kernel Development 2025  (Lida 52 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 124630
  • Karma: +0/-0
Introduction to Triton Kernel Development 2025
« em: 25 de Abril de 2025, 10:31 »
Introduction to Triton Kernel Development 2025


Published 4/2025
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 34m | Size: 157 MB

Master GPU Acceleration with Custom Triton Kernels: From Basics to High-Performance Fused Softmax Implementation Pytorch


What you'll learn
Triton Kernel Development for Nvidia GPUs
Advanced AI Kernel Development
How to write high performance numerical optimizations for PyTorch
Basics of Kernel and Compiler optimziation
Requirements
Experience in machine learning and PyTorch.
Description
Unlock the power of GPU acceleration without writing CUDA code! This hands-on course guides you through creating custom high-performance kernels using Triton and PyTorch on Google Colab's T4 GPUs. Perfect for ML engineers and researchers who want to optimize their deep learning models.You'll start with Triton fundamentals and progressively build toward implementing an efficient fused softmax kernel - a critical component in transformer models. Through detailed comparisons with PyTorch's native implementation, you'll gain insights into performance optimization principles and practical acceleration techniques.This comprehensive course covers:Triton programming model and core conceptsModern GPU architecture fundamentals and memory hierarchyPyTorch integration techniques and performance baselinesStep-by-step implementation of softmax in both PyTorch and TritonDeep dive into the Triton compiler and its optimization passesMemory access patterns and tiling strategies for maximum throughputRegister, shared memory, and L1/L2 cache utilization techniquesPerformance profiling and bottleneck identificationAdvanced optimization strategies for real-world deploymentHands-on practice with Google Colab T4 GPUsYou'll not just learn to write kernels, but understand the underlying hardware interactions that make them fast. By comparing PyTorch's native operations with our custom Triton implementations, you'll develop intuition for when and how to optimize critical code paths in your own projects.No CUDA experience required - just Python and basic PyTorch knowledge. Join now to add hardware acceleration skills to your deep learning toolkit and take your models to the next level of performance!
Who this course is for
Machine learning developers who wish to author their own kernels.
Homepage:
Código: [Seleccione]
https://www.udemy.com/course/introduction-to-triton-kernel-development/
Screenshots


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/08541e307d79644166746f891aec4bc4/escgp.Introduction.to.Triton.Kernel.Development.2025.rar.html

nitroflare.com:
Citar
https://nitroflare.com/view/64B5F80664EE954/escgp.Introduction.to.Triton.Kernel.Development.2025.rar