* Cantinho Satkeys

Refresh History
  • FELISCUNHA: ghyt74   49E09B4F  E bom fim de semana   4tj97u<z
    29 de Março de 2025, 10:06
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i k7y8j0
    28 de Março de 2025, 03:20
  • cereal killa: try65hytr pessoal so passei para desejar uma boa noite  wwd46l0'
    27 de Março de 2025, 20:44
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    27 de Março de 2025, 11:32
  • j.s.: try65hytr a todos  4tj97u<z
    26 de Março de 2025, 20:40
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana   4tj97u<z
    22 de Março de 2025, 11:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    21 de Março de 2025, 03:27
  • j.s.: try65hytr a todos  49E09B4F
    20 de Março de 2025, 18:41
  • JPratas: dgtgtr Pessoal  4tj97u<z classic k7y8j0
    20 de Março de 2025, 18:22
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    19 de Março de 2025, 16:30
  • estorula: bitrecover
    18 de Março de 2025, 22:37
  • estorula: BitRecover PST Converter Wizard 10.6.2 Portable
    18 de Março de 2025, 22:33
  • j.s.: try65hytr a todos
    18 de Março de 2025, 21:02
  • Subwoofer21: obg
    17 de Março de 2025, 20:17
  • j.s.: dgtgtr a todos  49E09B4F
    16 de Março de 2025, 16:43
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    16 de Março de 2025, 10:10
  • cereal killa: ghyt74 e bom domingo  classic
    16 de Março de 2025, 08:53
  • FELISCUNHA: try65hytr   49E09B4F
    13 de Março de 2025, 21:08
  • cereal killa: try65hytr pessoal  classic
    13 de Março de 2025, 19:42
  • JPratas: try65hytr Pessoal  4tj97u<z classic
    13 de Março de 2025, 03:17

Autor Tópico: Timeplus Enterprise 2.7.3 macOS  (Lida 98 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 118496
  • Karma: +0/-0
Timeplus Enterprise 2.7.3 macOS
« em: 30 de Março de 2025, 05:04 »
Timeplus Enterprise 2.7.3 macOS


File size: 388.8 MB

Collect, Transform, Route, and Alert on Real-Time Data. Timeplus simplifies stateful stream processing and analytics with a single-binary engine. Reduce time, complexity, and cost by using SQL to build real-time applications, data pipelines, and dashboards at the edge or cloud.


Collection
With built-in External Streams and External Tables, Timeplus can natively collect real-time data from, or send data to, Kafka, Redpanda, ClickHouse, or another Timeplus instance, without any data duplication. Timeplus also supports a wide range of data sources through sink/source connectors. Users can push data from files (CSV/TSV), via native SDKs in Java, Go, or Python, JDBC/ODBC, Websockets, or REST APIs.
Transformation
With a powerful streaming SQL console, users can leverage their preferred query language to create Streams, Views, and incremental Materialized Views. This enables them to transform, roll up, join, correlate, enrich, aggregate, and downsample real-time data, generating meaningful outputs for real-time alerting, analytics, or any downstream systems.
Routing
Timeplus allows data to be routed to different sinks based on SQL-based criteria and provides a data lineage view of all derived streams in its console. A single data result can generate multiple outputs for various scenarios and systems, such as analytics, alerting, compliance, etc., without any vendor lock-in.
Analytics and Alerting
Powered by SSE (Server-Sent Events), Timeplus supports push-based, low-latency dashboards to visualize real-time insights through data pipelines or ad-hoc queries. Additionally, users can easily build observability dashboards using Grafana plugins. SQL-based rules can be used to trigger or resolve alerts in systems such as PagerDuty, Slack, and other downstream platforms.
Unified streaming and historical data processing
Timeplus streams offer high performance, resiliency, and seamless querying by using an internal Write Ahead Log (WAL) and Historical Store. The WAL ensures ultra-fast inserts and updates, while the Historical Store, optimized for various query types, handles efficient historical queries.
This architecture transparently serves data to users based on query type from both, often eliminating the need for Apache Kafka as a commit log or a separate downstream database, streamlining your data infrastructure.
Whats New
Updates: official site does not provide any info about changes in this version
Homepage:
Código: [Seleccione]
https://www.timeplus.com/
Download link

rapidgator.net:
Citar
https://rapidgator.net/file/be53927d85fe258c18736eabea6e2447/ztzlr.Timeplus.Enterprise.2.7.3.macOS.zip.html

nitroflare.com:
Citar
https://nitroflare.com/view/F161F98AC6ECBB2/ztzlr.Timeplus.Enterprise.2.7.3.macOS.zip