* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Boa tarde pessoal  49E09B4F bom fim de semana  htg6454y
    05 de Setembro de 2025, 14:53
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    05 de Setembro de 2025, 03:10
  • cereal killa: dgtgtr pessoal  4tj97u<z
    03 de Setembro de 2025, 15:26
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    01 de Setembro de 2025, 11:36
  • j.s.: de regresso a casa  535reqef34
    31 de Agosto de 2025, 20:21
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Agosto de 2025, 20:21
  • FELISCUNHA: ghyt74   49E09B4e bom fim de semana  4tj97u<z
    30 de Agosto de 2025, 11:48
  • henrike: try65hytr     k7y8j0
    29 de Agosto de 2025, 21:52
  • JPratas: try65hytr Pessoal 4tj97u<z 2dgh8i classic k7y8j0
    29 de Agosto de 2025, 03:57
  • cereal killa: dgtgtr pessoal  2dgh8i
    27 de Agosto de 2025, 12:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    24 de Agosto de 2025, 11:26
  • janstu10: reed
    24 de Agosto de 2025, 10:52
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    23 de Agosto de 2025, 12:03
  • joca34: cd Vem dançar Kuduro Summer 2025
    22 de Agosto de 2025, 23:07
  • joca34: cd Kizomba Mix 2025
    22 de Agosto de 2025, 23:06
  • JPratas: try65hytr A Todos e Boas Férias 4tj97u<z htg6454y k7y8j0
    22 de Agosto de 2025, 04:22
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    21 de Agosto de 2025, 11:15
  • cereal killa: dgtgtr e boas ferias  r4v8p 535reqef34
    18 de Agosto de 2025, 13:04
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    18 de Agosto de 2025, 11:31
  • joca34: bom dia alguem tem es cd Portugal emigrante 2025
    17 de Agosto de 2025, 05:46

Autor Tópico: Implementing Multi Cloud Modal Data For Beginners  (Lida 87 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 124881
  • Karma: +0/-0
Implementing Multi Cloud Modal Data For Beginners
« em: 22 de Setembro de 2024, 14:58 »
Implementing Multi Cloud Modal Data For Beginners



Published 9/2024
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 1.20 GB | Duration: 1h 3m

Learn how to implement multi cloud with modal data and multimodal and Build multi-vector systems more!


What you'll learn
You are going to learn about Retrieval-Augmented Generation with multimodal data
You are going to build multimodal Retrieval-Augmented Generation systems
You are going to multi multimodal search
You are going to build multi-vector recommended system
Requirements
You need to have internet to take this course
Description
Retrieval-Augmented Generation is a hybrid model that integrates retrieval mechanisms with generative models, enhancing the ability of AI to generate more accurate and contextually relevant text. RAG combines the strengths of information retrieval systems, such as search engines, with the language generation capabilities of models. This approach addresses a common limitation in generative models: the challenge of producing factual and up-to-date information.Retrieval-Augmented Generation overcomes this by introducing a retrieval component that fetches relevant documents from an external corpus, often using dense retrievers such as DPR (Dense Passage Retrieval) or BM25, during the generation process. outputs are produced based on a static dataset on which the model has been trained. While this allows for coherent text generation, these models often struggle with generating factually accurate or domain-specific responses, especially when the required information was not part of their training data. Retrieval-Augmented Generation enhances the performance of generative models by integrating retrieval systems, making it a powerful tool for producing accurate, contextually relevant, and real-time information in various AI-driven applications. One of the significant advantages of Retrieval-Augmented Generation is its flexibility in incorporating external knowledge sources, such as databases, research papers, or updated web articles. This makes it particularly effective for applications requiring real-time, factual information, such as question-answering systems, customer support, or technical documentation.
Overview
Section 1: Introduction
Lecture 1 Introduction
Lecture 2 Multi Model
Lecture 3 Contextual Relationship
Lecture 4 Mango DB Database
Lecture 5 Architecture of Resources in AI
Lecture 6 Multimodel Embedding and Generation
Lecture 7 Types of NoSQL database
Lecture 8 Imagenet
Data Scientists,Machine Learning Engineers

Screenshots


rapidgator.net:
Citar
https://rapidgator.net/file/f60a6e18800ab46b2169d1279a4ae45d/knhru.Implementing.Multi.Cloud.ModalData.For.Beginners.part1.rar.html
https://rapidgator.net/file/00c99cd05c3b2016889a36633823eced/knhru.Implementing.Multi.Cloud.ModalData.For.Beginners.part2.rar.html

ddownload.com:
Citar
https://ddownload.com/pgq2ei9j8m60/knhru.Implementing.Multi.Cloud.ModalData.For.Beginners.part1.rar
https://ddownload.com/yvekk8i9mzoi/knhru.Implementing.Multi.Cloud.ModalData.For.Beginners.part2.rar