* Cantinho Satkeys

Refresh History
  • JPratas: try65hytr Pessoal  classic k7y8j0
    Hoje às 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10
  • JPratas: dgtgtr Pessoal  49E09B4F k7y8j0
    06 de Novembro de 2024, 17:19
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37

Autor Tópico: Learn Ai-Aided Content Analysis On Divominer®  (Lida 51 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115947
  • Karma: +0/-0
Learn Ai-Aided Content Analysis On Divominer®
« em: 19 de Maio de 2023, 08:36 »

Learn Ai-Aided Content Analysis On Divominer®
Published 5/2023
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
Language: English | Size: 677.10 MB | Duration: 0h 55m

Learn AI-aided content analysis and the operating procedures in one-stop. Data in, value out.

What you'll learn
The procedures of doing content analysis
Data sampling
Theme identification and codebook development
Inter-coder reliability test
Machine coding and manual coding on the DiVoMiner® platform
Statistical analysis and data visualization
Requirements
Basic knowledge of how to do a qualitative and quantitative research
Description
Traditional content analysis method (like manual coding) is a lengthy and time-consuming process for researchers in the "big data" context. This course introduces innovative AI-aided content analysis methodology for analysing digital data, empowered by natural language processing (NLP), aiming to help researchers to do social science research faster and more efficiently.The course includes 6 modules:(1) Introduction of content analysis and the operating procedures.(2) The data management: how to upload research data on the platform; how to customize database based on the research purpose; and how to sample data.(3) Data exploration: an initial step to quickly analyse and overview the data. How to present the overall trend of the data in the form of a time series chart, the major themes of the content in the form of a word cloud diagram, and keywords statistics.(4) Theme identification and codebook development: some tips to form coding categories from a large text corpus in an efficient, fast, and comprehensible manner.(5) Machine and manual coding: a data-driven "AI-assisted content analysis" approach is proposed to support researchers on their content analysis in an efficient and effective way, aiming to save 80% of their time on repetitive work like coding.(6) Statistical analysis and data visualization: present analysis results with a variety of visualization tools, such as word cloud, radar charts, scatter graph, heat map and Sankey diagram.
Overview
Section 1: Introduction
Lecture 1 Introduction
Lecture 2 The procedures of content analysis
Lecture 3 Introduction of Some Automated Content Analysis (ACA) Platform
Lecture 4 Data Management on DiVoMiner®
Lecture 5 Data Exploration on DiVoMiner®
Lecture 6 Theme Identification and Codebook Development on DiVoMiner®
Lecture 7 Inter-coder Reliability Test and Coding on DiVoMiner®
Lecture 8 Quality Monitoring on DiVoMiner®
Lecture 9 Statistical Analysis and Data Visualization on DiVoMiner®
Lecture 10 Smart Codebook on DiVoMiner®
Beginner social sciences researchers,Students in Communication and Media,Social media analyst


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/ede1ec4643a8a5f653e2ce7d5d5f0401/htzlu.Learn.AiAided.Content.Analysis.On.Divominer.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/8d6c7Eb6Fd0461a7/htzlu.Learn.AiAided.Content.Analysis.On.Divominer.rar

nitroflare.com:
Citar
https://nitroflare.com/view/BF9DAE2D5BB0871/htzlu.Learn.AiAided.Content.Analysis.On.Divominer.rar

1dl.net:
Citar
https://1dl.net/1oqi4ds9no91/htzlu.Learn.AiAided.Content.Analysis.On.Divominer.rar