* Cantinho Satkeys

Refresh History
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10
  • JPratas: dgtgtr Pessoal  49E09B4F k7y8j0
    06 de Novembro de 2024, 17:19
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24

Autor Tópico: Mastering Mlops: From Development To Deployment  (Lida 32 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115915
  • Karma: +0/-0
Mastering Mlops: From Development To Deployment
« em: 15 de Abril de 2023, 06:48 »

Mastering Mlops: From Development To Deployment
Published 4/2023
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
Language: English | Size: 234.23 MB | Duration: 0h 36m

Strategies and Best Practices for Deploying Machine Learning Models at Scale

What you'll learn
Understand the principles of MLOps
Learn how to deploy machine learning models in production
Gain practical experience with MLOps tools and technologies
Develop best practices for managing machine learning models in production
Requirements
Whether you're a seasoned data scientist or a beginner in the field, this course will provide you with the skills and knowledge you need to succeed in the rapidly evolving world of machine learning.
Description
The field of Machine Learning Operations (MLOps) is rapidly gaining importance as more and more organizations seek to deploy and manage machine learning models at scale. This comprehensive course is designed to provide learners with the skills and knowledge they need to successfully manage machine learning models in production environments.Through a combination of lectures, case studies, and hands-on exercises, learners will gain an in-depth understanding of the principles of MLOps, as well as the tools and techniques used in the field. The course covers the entire lifecycle of MLOps, from developing machine learning models to deploying them in production environments.In this course, learners will:Learn about the principles of MLOps, including collaboration between data scientists and IT operations teams, continuous integration and deployment, and monitoring and maintenance of machine learning models in production.Gain hands-on experience with MLOps tools and technologies, including Docker and Kubernetes.Learn how to deploy machine learning models in production environments, including setting up infrastructure, building pipelines, and ensuring security and compliance.Develop best practices for managing machine learning models in production, including monitoring and maintenance, as well as strategies for optimizing performance and reducing costs.Explore real-world case studies and examples, and learn from industry experts who have successfully implemented MLOps in their organizations.By the end of this course, learners will be able to confidently manage machine learning models in production environments and will have the skills and knowledge they need to be successful in the rapidly growing field of MLOps.
Overview
Section 1: Introduction
Lecture 1 Course Features
Lecture 2 Course Overview
Lecture 3 Use-case of MLOps
Lecture 4 Steps of an ML project
Lecture 5 Key Challenges in MLOps
Lecture 6 Deployment Patterns
Lecture 7 Monitoring in MLOps
Lecture 8 Pipeline Monitoring
Python Programmers,Data Scientists


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/7bd74785c9a3a0aae3671052de13f75f/xbkso.Mastering.Mlops.From.Development.To.Deployment.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/5dB9bAa2e90d3867/xbkso.Mastering.Mlops.From.Development.To.Deployment.rar

nitroflare.com:
Citar
https://nitroflare.com/view/C6B64FBEBE37CDE/xbkso.Mastering.Mlops.From.Development.To.Deployment.rar

1dl.net:
Citar
https://1dl.net/cvcaqc8rtzy5/xbkso.Mastering.Mlops.From.Development.To.Deployment.rar