* Cantinho Satkeys

Refresh History
  • yaro-82: 1994
    07 de Setembro de 2025, 16:49
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  43e5r6
    07 de Setembro de 2025, 10:52
  • j.s.: tenham um excelente fim de semana  49E09B4F
    06 de Setembro de 2025, 17:07
  • j.s.: dgtgtr a todos  4tj97u<z
    06 de Setembro de 2025, 17:07
  • FELISCUNHA: Boa tarde pessoal  49E09B4F bom fim de semana  htg6454y
    05 de Setembro de 2025, 14:53
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    05 de Setembro de 2025, 03:10
  • cereal killa: dgtgtr pessoal  4tj97u<z
    03 de Setembro de 2025, 15:26
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    01 de Setembro de 2025, 11:36
  • j.s.: de regresso a casa  535reqef34
    31 de Agosto de 2025, 20:21
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Agosto de 2025, 20:21
  • FELISCUNHA: ghyt74   49E09B4e bom fim de semana  4tj97u<z
    30 de Agosto de 2025, 11:48
  • henrike: try65hytr     k7y8j0
    29 de Agosto de 2025, 21:52
  • JPratas: try65hytr Pessoal 4tj97u<z 2dgh8i classic k7y8j0
    29 de Agosto de 2025, 03:57
  • cereal killa: dgtgtr pessoal  2dgh8i
    27 de Agosto de 2025, 12:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    24 de Agosto de 2025, 11:26
  • janstu10: reed
    24 de Agosto de 2025, 10:52
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    23 de Agosto de 2025, 12:03
  • joca34: cd Vem dançar Kuduro Summer 2025
    22 de Agosto de 2025, 23:07
  • joca34: cd Kizomba Mix 2025
    22 de Agosto de 2025, 23:06
  • JPratas: try65hytr A Todos e Boas Férias 4tj97u<z htg6454y k7y8j0
    22 de Agosto de 2025, 04:22

Autor Tópico: Machine Learning Models With Fastapi, Streamlit And Docker  (Lida 83 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 124987
  • Karma: +0/-0
Machine Learning Models With Fastapi, Streamlit And Docker
« em: 19 de Março de 2023, 11:51 »

Machine Learning Models With Fastapi, Streamlit And Docker
Published 3/2023
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
Language: English | Size: 764.33 MB | Duration: 1h 4m

Learn how to serve a machine learning model with FastAPI, Streamlit and Docker

What you'll learn
Develop an asynchronous API with Python and FastAPI
Serve up a machine learning model with FastAPI
Develop a UI with Streamlit
Containerize FastAPI and Streamlit with Docker
Leverage asyncio to execute code in the background outside the request/response flow
Requirements
Intermediate Python Skills
Intermediate Docker Skills
Description
The course "Serving a Machine Learning Model with FastAPI, Streamlit and Docker" is designed to provide learners with a comprehensive understanding of deploying a machine learning model using FastAPI, Streamlit, and Docker. This course is suitable for developers, data scientists, or anyone interested in deploying machine learning models in production.The course will begin with an introduction to the basics of deploying machine learning model. Learners will then be introduced to FastAPI, an efficient and easy-to-use web framework for building APIs in Python, and learn how to create a RESTful API for their machine learning model.Next, learners will be introduced to Streamlit, a powerful web application framework for creating interactive data visualizations and deploying machine learning models. The course will teach learners how to use Streamlit to create a user-friendly interface to interact with the machine learning model and visualize the model's predictions.Finally, learners will be introduced to Docker, a popular platform for building, shipping, and running applications in containers. The course will teach learners how to containerize their machine learning model using Docker, making it easy to deploy and scale.By the end of this course, learners will have gained hands-on experience in deploying machine learning models using FastAPI, Streamlit, and Docker. They will have the skills and knowledge to build and deploy their own machine learning models in production environments, and be able to demonstrate their ability to deploy machine learning models on a resume or portfolio.In this course, we're going to build a style transfer application based on the Perceptual Losses for Real-Time Style Transfer and Super-Resolution paper and Justin Johnson's pre-trained models. We'll use FastAPI as the backend to serve our predictions, Streamlit for the user interface, and OpenCV to do the actual prediction. Docker will be used as well.By the end of this course, you will be able to:Develop an asynchronous API with Python and FastAPIServe up a machine learning model with FastAPIDevelop a UI with StreamlitContainerize FastAPI and Streamlit with DockerLeverage asyncio to execute code in the background outside the request/response flow
Overview
Section 1: Introduction
Lecture 1 Introduction and App Overview
Lecture 2 FastAPI and Streamlit for Machine Learning Overview
Lecture 3 Docker Installation Guide
Lecture 4 Final Code
Section 2: FastAPI and Docker Backend
Lecture 5 Project Setup
Lecture 6 FastAPI Backend and Image Transformation Functionality
Lecture 7 Docker Container Setup
Section 3: Streamlit and Docker Frontend
Lecture 8 Developing the Streamlit User Interface
Lecture 9 Docker Compose Setup
Section 4: Asynchronous Model Serving
Lecture 10 Asynchronous Model Serving with FastAPI
Lecture 11 Updating the UI to respond to the async server
Section 5: Conclusion
Lecture 12 Conclusion and Final Remarks
Lecture 13 Final Code
Python Developers curious about Machine Learning,Developers who want to learn about working with Streamlit,Developers who want to learn how to prototype a subscription-based machine learning model.


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/d90aa1ae92091b03799b7d0a0b90d843/oncnw.Machine.Learning.Models.With.Fastapi.Streamlit.And.Docker.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/47cA3Ea8d16a048e/oncnw.Machine.Learning.Models.With.Fastapi.Streamlit.And.Docker.rar

nitroflare.com:
Citar
https://nitroflare.com/view/52C4C9BC1420F74/oncnw.Machine.Learning.Models.With.Fastapi.Streamlit.And.Docker.rar

ddownload.com:
Citar
https://ddownload.com/wgy9ldaf6pz2/oncnw.Machine.Learning.Models.With.Fastapi.Streamlit.And.Docker.rar