* Cantinho Satkeys

Refresh History
  • yaro-82: 1994
    07 de Setembro de 2025, 16:49
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  43e5r6
    07 de Setembro de 2025, 10:52
  • j.s.: tenham um excelente fim de semana  49E09B4F
    06 de Setembro de 2025, 17:07
  • j.s.: dgtgtr a todos  4tj97u<z
    06 de Setembro de 2025, 17:07
  • FELISCUNHA: Boa tarde pessoal  49E09B4F bom fim de semana  htg6454y
    05 de Setembro de 2025, 14:53
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    05 de Setembro de 2025, 03:10
  • cereal killa: dgtgtr pessoal  4tj97u<z
    03 de Setembro de 2025, 15:26
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    01 de Setembro de 2025, 11:36
  • j.s.: de regresso a casa  535reqef34
    31 de Agosto de 2025, 20:21
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Agosto de 2025, 20:21
  • FELISCUNHA: ghyt74   49E09B4e bom fim de semana  4tj97u<z
    30 de Agosto de 2025, 11:48
  • henrike: try65hytr     k7y8j0
    29 de Agosto de 2025, 21:52
  • JPratas: try65hytr Pessoal 4tj97u<z 2dgh8i classic k7y8j0
    29 de Agosto de 2025, 03:57
  • cereal killa: dgtgtr pessoal  2dgh8i
    27 de Agosto de 2025, 12:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    24 de Agosto de 2025, 11:26
  • janstu10: reed
    24 de Agosto de 2025, 10:52
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    23 de Agosto de 2025, 12:03
  • joca34: cd Vem dançar Kuduro Summer 2025
    22 de Agosto de 2025, 23:07
  • joca34: cd Kizomba Mix 2025
    22 de Agosto de 2025, 23:06
  • JPratas: try65hytr A Todos e Boas Férias 4tj97u<z htg6454y k7y8j0
    22 de Agosto de 2025, 04:22

Autor Tópico: Working with Multidimensional Data Using NumPy  (Lida 97 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 124987
  • Karma: +0/-0
Working with Multidimensional Data Using NumPy
« em: 27 de Dezembro de 2022, 12:08 »


Janani Ravi | Duration: 1:43 h | Video: H264 1280x720 | Audio: AAC 44,1 kHz 2ch | 207 MB | Language: English

As working with huge numeric datasets becomes the norm, using the right tools and libraries to work with the data becomes very important. NumPy allows data analysts and data scientists to work with multi-dimensional data to solve these problems.
As machine learning and deep learning techniques become popular, getting the dataset into the right numeric form and engineering the right features to feed into ML models becomes critical.
In this course, Working with Multidimensional Data Using NumPy, you'll learn the simple and intuitive functions and classes that NumPy offers to work with data of high dimensionality.
First, you will get familiar with basic operations to explore multi-dimensional data, such as creating, printing, and performing basic mathematical operations with arrays. You'll study indexing and slicing of array data and iterating over lists and see how images are basically 3D arrays and how they can be manipulated with NumPy.
Next, you will move on to complex indexing functions. NumPy arrays can be indexed with conditional functions as well as arrays of indices. You'll then see how broadcasting rules work which allows NumPy to perform operations on arrays with different shapes as well as, study array operations such as np.argmax() which are very common when working with ML problems.
Finally, you'll study how NumPy integrates with other libraries in the PyData stack. You will also cover specific implementations with SciPy and with Pandas.
At the end of this course, you will be comfortable using the array manipulation techniques that NumPy has to offer to get your data in the right form for extracting insights.


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/c655cde88f2d7a5947877048a6a73a7f/armxf.Working.with.Multidimensional.Data.Using.NumPy.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/9b5234b17b1C5426/armxf.Working.with.Multidimensional.Data.Using.NumPy.rar

nitroflare.com:
Citar
https://nitroflare.com/view/F5BF73654BC07FE/armxf.Working.with.Multidimensional.Data.Using.NumPy.rar