* Cantinho Satkeys

Refresh History
  • Radio TugaNet: boas tardes
    14 de Outubro de 2025, 13:14
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    11 de Outubro de 2025, 12:06
  • JPratas: try65hytr Pessoal  49E09B4F 2dgh8i k7y8j0 yu7gh8
    10 de Outubro de 2025, 03:59
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    08 de Outubro de 2025, 11:44
  • joca34: ola amigos boas noite alguem este cd Disco Festa Portuguesa (Ao Vivo)
    07 de Outubro de 2025, 22:45
  • pxsofficial: alguem ainda tem o Mega Pack de Filmes Infantis Dublados PT-PT
    07 de Outubro de 2025, 21:22
  • FELISCUNHA: ghyt74   49E09B4F  Votos de um santo domingo para todo o auditório  4tj97u<z
    05 de Outubro de 2025, 11:03
  • j.s.: um santo domingo  49E09B4F
    05 de Outubro de 2025, 10:52
  • j.s.: ghyt74 a todos  49E09B4F
    05 de Outubro de 2025, 10:52
  • gitzbeka: tivi mate
    04 de Outubro de 2025, 18:21
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana   4tj97u<z
    03 de Outubro de 2025, 11:42
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i k7y8j0 yu7gh8
    03 de Outubro de 2025, 03:07
  • j.s.: dgtgtr a todos  4tj97u<z
    02 de Outubro de 2025, 16:26
  • FELISCUNHA: ghyt74  49E09B4F  e bom fim de semana  4tj97u<z
    27 de Setembro de 2025, 11:08
  • Radio TugaNet: bom dia Pessoal
    27 de Setembro de 2025, 08:45
  • j.s.: tenham um excelente fim de semana  4tj97u<z
    26 de Setembro de 2025, 19:18
  • j.s.: try65hytr a todos 49E09B4F
    26 de Setembro de 2025, 19:18
  • JPratas: try65hytr Pessoal  4tj97u<z k7y8j0 yu7gh8
    26 de Setembro de 2025, 03:18
  • FELISCUNHA: henrike enviei PM
    24 de Setembro de 2025, 12:38
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    22 de Setembro de 2025, 11:43

Autor Tópico: A Mathematical Introduction To General Relativity  (Lida 150 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online oaxino

  • Moderador Global
  • ***
  • Mensagens: 41228
  • Karma: +0/-0
A Mathematical Introduction To General Relativity
« em: 06 de Dezembro de 2022, 05:52 »


English | ISBN: 9811256721, 9811243778 | 2021 | 500 pages | PDF | 5 MB


The book aims to give a mathematical presentation of the theory of general relativity (that is, spacetime-geometry-based gravitation theory) to advanced undergraduate mathematics students. Mathematicians will find spacetime physics presented in the definition-theorem-proof format familiar to them. The given precise mathematical definitions of physical notions help avoiding pitfalls, especially in the context of spacetime physics describing phenomena that are counter-intuitive to everyday experiences. In the first part, the differential geometry of smooth manifolds, which is needed to present the spacetime-based gravitation theory, is developed from scratch. Here, many of the illustrating examples are the Lorentzian manifolds which later serve as spacetime models. This has the twofold purpose of making the physics forthcoming in the second part relatable, and the mathematics learnt in the first part less dry. The book uses the modern coordinate-free language of semi-Riemannian geometry. Nevertheless, to familiarise the reader with the useful tool of coordinates for computations, and to bridge the gap with the physics literature, the link to coordinates is made through exercises, and via frequent remarks on how the two languages are related. In the second part, the focus is on physics, covering essential material of the 20th century spacetime-based view of gravity: energy-momentum tensor field of matter, field equation, spacetime examples, Newtonian approximation, geodesics, tests of the theory, black holes, and cosmological models of the universe. Prior knowledge of differential geometry or physics is not assumed. The book is intended for self-study, and the solutions to the (over 200) exercises are included.

DOWNLOAD

rapidgator.net:
Citar
https://rapidgator.net/file/f9a62997b6f2aaeb1ef638325c909d71/xdill.A.Mathematical.Introduction.To.General.Relativity.pdf.html

nitroflare.com:
Citar
https://nitroflare.com/view/43331A7B2E5181E/xdill.A.Mathematical.Introduction.To.General.Relativity.pdf