* Cantinho Satkeys

Refresh History
  • Radio TugaNet: boas tardes
    14 de Outubro de 2025, 13:14
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    11 de Outubro de 2025, 12:06
  • JPratas: try65hytr Pessoal  49E09B4F 2dgh8i k7y8j0 yu7gh8
    10 de Outubro de 2025, 03:59
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    08 de Outubro de 2025, 11:44
  • joca34: ola amigos boas noite alguem este cd Disco Festa Portuguesa (Ao Vivo)
    07 de Outubro de 2025, 22:45
  • pxsofficial: alguem ainda tem o Mega Pack de Filmes Infantis Dublados PT-PT
    07 de Outubro de 2025, 21:22
  • FELISCUNHA: ghyt74   49E09B4F  Votos de um santo domingo para todo o auditório  4tj97u<z
    05 de Outubro de 2025, 11:03
  • j.s.: um santo domingo  49E09B4F
    05 de Outubro de 2025, 10:52
  • j.s.: ghyt74 a todos  49E09B4F
    05 de Outubro de 2025, 10:52
  • gitzbeka: tivi mate
    04 de Outubro de 2025, 18:21
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana   4tj97u<z
    03 de Outubro de 2025, 11:42
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i k7y8j0 yu7gh8
    03 de Outubro de 2025, 03:07
  • j.s.: dgtgtr a todos  4tj97u<z
    02 de Outubro de 2025, 16:26
  • FELISCUNHA: ghyt74  49E09B4F  e bom fim de semana  4tj97u<z
    27 de Setembro de 2025, 11:08
  • Radio TugaNet: bom dia Pessoal
    27 de Setembro de 2025, 08:45
  • j.s.: tenham um excelente fim de semana  4tj97u<z
    26 de Setembro de 2025, 19:18
  • j.s.: try65hytr a todos 49E09B4F
    26 de Setembro de 2025, 19:18
  • JPratas: try65hytr Pessoal  4tj97u<z k7y8j0 yu7gh8
    26 de Setembro de 2025, 03:18
  • FELISCUNHA: henrike enviei PM
    24 de Setembro de 2025, 12:38
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    22 de Setembro de 2025, 11:43

Autor Tópico: The Geometry of Walker Manifolds  (Lida 177 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online oaxino

  • Moderador Global
  • ***
  • Mensagens: 41252
  • Karma: +0/-0
The Geometry of Walker Manifolds
« em: 15 de Novembro de 2022, 11:58 »


English | PDF | 2009 | 177 Pages | ISBN : 1598298194 | 1.2 MB


This book, which focuses on the study of curvature, is an introduction to various aspects of pseudo-Riemannian geometry. We shall use Walker manifolds (pseudo-Riemannian manifolds which admit a non-trivial parallel null plane field) to exemplify some of the main differences between the geometry of Riemannian manifolds and the geometry of pseudo-Riemannian manifolds and thereby illustrate phenomena in pseudo-Riemannian geometry that are quite different from those which occur in Riemannian geometry, i.e. for indefinite as opposed to positive definite metrics. Indefinite metrics are important in many diverse physical contexts: classical cosmological models (general relativity) and string theory to name but two. Walker manifolds appear naturally in numerous physical settings and provide examples of extremal mathematical situations as will be discussed presently. To describe the geometry of a pseudo-Riemannian manifold, one must first understand the curvature of the manifold. We shall analyze a wide variety of curvature properties and we shall derive both geometrical and topological results. Special attention will be paid to manifolds of dimension 3 as these are quite tractable. We then pass to the 4 dimensional setting as a gateway to higher dimensions. Since the book is aimed at a very general audience (and in particular to an advanced undergraduate or to a beginning graduate student), no more than a basic course in differential geometry is required in the way of background. To keep our treatment as self-contained as possible, we shall begin with two elementary chapters that provide an introduction to basic aspects of pseudo-Riemannian geometry before beginning on our study of Walker geometry. An extensive bibliography is provided for further reading.

DOWNLOAD

katfile.com:
Citar
https://katfile.com/b744gf8ggocs/uiues.The.Geometry.of.Walker.Manifolds.pdf.html

rapidgator.net:
Citar
https://rapidgator.net/file/cfe2ae7aa95c68fe6819a59dd2691b23/uiues.The.Geometry.of.Walker.Manifolds.pdf.html

nitroflare.com:
Citar
https://nitroflare.com/view/B1F9EC3389659D6/uiues.The.Geometry.of.Walker.Manifolds.pdf