* Cantinho Satkeys

Refresh History
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    Hoje às 11:15
  • cereal killa: dgtgtr e boas ferias  r4v8p 535reqef34
    18 de Agosto de 2025, 13:04
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    18 de Agosto de 2025, 11:31
  • joca34: bom dia alguem tem es cd Portugal emigrante 2025
    17 de Agosto de 2025, 05:46
  • j.s.: bom fim de semana  49E09B4F
    16 de Agosto de 2025, 20:47
  • j.s.: try65hytr a todos  4tj97u<z
    16 de Agosto de 2025, 20:47
  • Itelvo: Bom dia pessoal
    15 de Agosto de 2025, 14:02
  • FELISCUNHA: ghyt74  e bom feriado  4tj97u<z
    15 de Agosto de 2025, 11:11
  • JPratas: try65hytr A Todos  htg6454y k7y8j0
    15 de Agosto de 2025, 04:06
  • FELISCUNHA: h7t45  j.s. pela informação
    13 de Agosto de 2025, 10:20
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    13 de Agosto de 2025, 10:19
  • j.s.: 4tj97u<z 4tj97u<z
    12 de Agosto de 2025, 17:37
  • j.s.: Relembramos que por mudança de servidor, que vai ter lugar entre as 20h00 do dia 13/0/2025 e as 10h00 do dia 14/08/2025, podemos neste periodo estar em off line
    12 de Agosto de 2025, 17:36
  • j.s.: dgtgtr a todos  4tj97u<z
    12 de Agosto de 2025, 17:33
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    09 de Agosto de 2025, 11:19
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i yu7gh8 k7y8j0
    08 de Agosto de 2025, 03:48
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    07 de Agosto de 2025, 08:43
  • j.s.: dgtgtr a todos  4tj97u<z
    06 de Agosto de 2025, 16:51
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    04 de Agosto de 2025, 11:48
  • ricardo 2087: Toy
    02 de Agosto de 2025, 22:21

Autor Tópico: The Geometry of Walker Manifolds  (Lida 165 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online oaxino

  • Moderador Global
  • ***
  • Mensagens: 38104
  • Karma: +0/-0
The Geometry of Walker Manifolds
« em: 15 de Novembro de 2022, 11:58 »


English | PDF | 2009 | 177 Pages | ISBN : 1598298194 | 1.2 MB


This book, which focuses on the study of curvature, is an introduction to various aspects of pseudo-Riemannian geometry. We shall use Walker manifolds (pseudo-Riemannian manifolds which admit a non-trivial parallel null plane field) to exemplify some of the main differences between the geometry of Riemannian manifolds and the geometry of pseudo-Riemannian manifolds and thereby illustrate phenomena in pseudo-Riemannian geometry that are quite different from those which occur in Riemannian geometry, i.e. for indefinite as opposed to positive definite metrics. Indefinite metrics are important in many diverse physical contexts: classical cosmological models (general relativity) and string theory to name but two. Walker manifolds appear naturally in numerous physical settings and provide examples of extremal mathematical situations as will be discussed presently. To describe the geometry of a pseudo-Riemannian manifold, one must first understand the curvature of the manifold. We shall analyze a wide variety of curvature properties and we shall derive both geometrical and topological results. Special attention will be paid to manifolds of dimension 3 as these are quite tractable. We then pass to the 4 dimensional setting as a gateway to higher dimensions. Since the book is aimed at a very general audience (and in particular to an advanced undergraduate or to a beginning graduate student), no more than a basic course in differential geometry is required in the way of background. To keep our treatment as self-contained as possible, we shall begin with two elementary chapters that provide an introduction to basic aspects of pseudo-Riemannian geometry before beginning on our study of Walker geometry. An extensive bibliography is provided for further reading.

DOWNLOAD

katfile.com:
Citar
https://katfile.com/b744gf8ggocs/uiues.The.Geometry.of.Walker.Manifolds.pdf.html

rapidgator.net:
Citar
https://rapidgator.net/file/cfe2ae7aa95c68fe6819a59dd2691b23/uiues.The.Geometry.of.Walker.Manifolds.pdf.html

nitroflare.com:
Citar
https://nitroflare.com/view/B1F9EC3389659D6/uiues.The.Geometry.of.Walker.Manifolds.pdf