* Cantinho Satkeys

Refresh History
  • JPratas: dgtgtr Pessoal  49E09B4F k7y8j0
    Hoje às 17:19
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31

Autor Tópico: TinyML with Arduino Nano RP2040 Connect  (Lida 61 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115810
  • Karma: +0/-0
TinyML with Arduino Nano RP2040 Connect
« em: 11 de Outubro de 2022, 14:16 »


TinyML with Arduino Nano RP2040 Connect
Published 10/2022
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 16 lectures (1h 35m) | Size: 669 MB
Machine learning model development for tiny low power microcontroller such as Arduino nano RP2040 connect

What you'll learn
To be able to understand hardware requirement for development of machine learning model for tiny MCUs
Understanding the tinyML development framework
To be able to create tinyML projects based upon hand gesture
To be able to develop tinyML model with audio keyword detection
Requirements
Arduino nano-RP2040 connect board, USB cable, PC/Laptop, Basic knowledge about Arduino IDE, basic knowledge of machine learning, basics of embedded C/C++
Description
**Note: This course is not finalized yet. As you know, the TinyML field is constantly growing and developing. So, keeping in mind more sections with theoretical explanations with hands-on project ideas will be included in the near future.
Tiny machine learning, which targets battery-operated devices, is broadly defined as a rapidly expanding field of machine learning technologies and applications that includes hardware (dedicated integrated circuits), algorithms, and software that can perform on-device sensor data analytics at extremely low power, typically in the mW range and below. It eliminates the requirement to send data to the cloud for classification thus providing more security. Also, power-hungry processors are being replaced by a tiny MCU. Of course, there are limitations. The limitations came from limited hardware resources, clock speed, etc. Still, there are several application areas where high computation is not required and a machine learning-based solution is desirable. In that case, TinyML will come into the picture. It can be used to detect anomalies in machinery in a factory, it can predict maintenance requirements of the instruments, healthcare field, and so on. The application domain of TinyML is wide and the future is bright.
The primary objective of this course is to be familiar with TinyML development starting from data collection, model training, testing, and deployment. A low-cost Arduino nano RP2040 connect board having 265KB RAM and 16MB flash with in built accelerometer, Gyroscope, Microphone, temperature sensor, and wireless connectivity module (WiFi+Bluetooth) is used in this course and all example demonstrated here is tested on this board.
Who this course is for
Beginner, interested to develop machine learning model in low cost, low power microcontroller

Download link

rapidgator.net:
Citar
https://rapidgator.net/file/3351e44fa25c19647f809cb0f46efdaf/raljj.TinyML.with.Arduino.Nano.RP2040.Connect.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/824Ce239c980950b/raljj.TinyML.with.Arduino.Nano.RP2040.Connect.rar

nitroflare.com:
Citar
https://nitroflare.com/view/5499C86C7A3E334/raljj.TinyML.with.Arduino.Nano.RP2040.Connect.rar

1dl.net:
Citar
https://1dl.net/jgs0tqapzfoo/raljj.TinyML.with.Arduino.Nano.RP2040.Connect.rar.html