* Cantinho Satkeys

Refresh History
  • JPratas: dgtgtr Pessoal  49E09B4F k7y8j0
    Hoje às 17:19
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31

Autor Tópico: Build A Secure Data Lake In Aws Using Aws Lake Formation  (Lida 58 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115810
  • Karma: +0/-0
Build A Secure Data Lake In Aws Using Aws Lake Formation
« em: 07 de Outubro de 2022, 04:58 »


Build A Secure Data Lake In Aws Using Aws Lake Formation
Last updated 2/2022
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
Language: English | Size: 1.50 GB | Duration: 3h 18m

Step by step guide for setting up a data lake in AWS using Lake formation, Glue, DataBrew, Athena, Redshift, Macie etc.

What you'll learn
How to quickly setup a data lake in AWS using AWS Lake formation
You will learn to build real-world data pipeline using AWS glue studio and ingest data from sources such as RDS, Kinesis Firehose and DynamoDB
You will learn how to transform data using AWS Glue Studio and AWS Glue DataBrew
You will acquire good data engineering skills in AWS using AWS lake formation, Glue Studio and, blueprints and workflows in lake formation
Requirements
Basic undestanding of cloud computing
Basic understanding of what a data lake and data warehouse are is essential but not required
An active AWS account is required to be able to follow along
Description
In this course, we will be creating a data lake using AWS Lake Formation and bring data warehouse capabilites to the data lake to form the lakehouse architecture using Amazon Redshift. Using Lake Formation, we also collect and catalog data from different data sources, move the data into our S3 data lake, and then clean and classify them.The course will follow a logical progression of a real world project implementation with hands on experience of setting up a data lake, creating data pipelines for ingestion and transforming your data in preparation for analytics and reporting.Chapter 1Setup the data lake using lake formationCreate different data sources (MySQL RDS and Kinesis)Ingest data from the MYSQL RDS data source into the data lake by setting up blueprint and workflow jobs in lake formationCatalog our Database using crawlersUse governed tables for managing access control and securityQuery our data lake using AthenaChapter 2,Explore the use of AWS Gluw DataBrew for profiling and understanding our data before we starting performing complex ETL jobs.Create Recipes for manipulating the data in our data lake using different transformationsClean and normalise dataRun jobs to apply the recipes on all new data or larger datasetsChapter 3Introduce Glue StudioAuthor and monitor ETL jobs for tranforming our data and moving them between different zone of our data lakeCreate a DynamoDB source and ingest data into our data lake using AWS GlueChapter 4Introduce and create a redshift cluster to bring datawarehouse capabilities to our data lake to form the lakehouse architectureCreate ETL jobs for moving data from our lake into the warehouse for analyticsUse redshift spectrum to query against data in our S3 data lake without the need for duplicating data or infrastructureChapter 5Introduce Amazon Macie for managing data security and data privacy and ensure we can continue to identify sensitive data at scale as our data lake grows
Overview
Section 1: Introduction
Lecture 1 Introduction to the course
Section 2: Setting up the Data Lake with AWS Lake formation
Lecture 2 Configuring S3 lake formation
Lecture 3 Simple file ingestion into the data lake
Lecture 4 Use blueprints and workflows in Lake formation for ingesting data from MySQL RDS
Lecture 5 Ingest real-time data using Kinesis firehose into the data lake
Lecture 6 Security and governance of our data lake with governed tables
Section 3: Preparation and analysis of data in our data lake using AWS Glue DataBrew
Lecture 7 Introduction to AWS Glue DataBrew
Lecture 8 Analysis and transformation of data in our data lake with Glue DataBrew
Lecture 9 Create DataBrew recipes and applying them to a larger datasets
Section 4: Author, run and monitor ETL jobs using AWS Glue Studio
Lecture 10 Introduction to AWS Glue Studio
Lecture 11 Author ETL jobs for moving data between the different zones in our data lake
Lecture 12 Ingest data from DynamoDB into the data lake using AWS Glue and catalog it
Section 5: Prepare our data for analytics and reporting
Lecture 13 Introduction to Amazon Redshift and setting up our Amazon Redshfit cluster
Lecture 14 Author ETL job for moving data from our data lake into the Redshift warehouse
Lecture 15 Using Redshift Spectrum for querying data located in our data lake
Section 6: Bonus
Lecture 16 Introduction to Amazon Macie for managing data security and privacy in our lake
Data Architects looking to architect data integration solutions in AWS cloud,Data Engineers,Anyone looking to start a career as an AWS Data Engineer,Data Scientist, Data Analyts and Database Administrators,IT professionals looking to move into the Data Engineering space


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/d86ba66ade9e2554a1e44fcf8f38c8be/vwyvc.Build.A.Secure.Data.Lake.In.Aws.Using.Aws.Lake.Formation.part1.rar.html
https://rapidgator.net/file/dd42fd97f0975c55a7c2e7610728873d/vwyvc.Build.A.Secure.Data.Lake.In.Aws.Using.Aws.Lake.Formation.part2.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/b82c0b49b7ff9789/vwyvc.Build.A.Secure.Data.Lake.In.Aws.Using.Aws.Lake.Formation.part1.rar
https://uploadgig.com/file/download/518800a27c90eA07/vwyvc.Build.A.Secure.Data.Lake.In.Aws.Using.Aws.Lake.Formation.part2.rar

nitroflare.com:
Citar
https://nitroflare.com/view/FC8435AFFC57525/vwyvc.Build.A.Secure.Data.Lake.In.Aws.Using.Aws.Lake.Formation.part1.rar
https://nitroflare.com/view/8CE7B940F23FA74/vwyvc.Build.A.Secure.Data.Lake.In.Aws.Using.Aws.Lake.Formation.part2.rar

1dl.net:
Citar
https://1dl.net/9f6wg0kftuyc/vwyvc.Build.A.Secure.Data.Lake.In.Aws.Using.Aws.Lake.Formation.part1.rar.html
https://1dl.net/lw8xf1u45hmi/vwyvc.Build.A.Secure.Data.Lake.In.Aws.Using.Aws.Lake.Formation.part2.rar.html