* Cantinho Satkeys

Refresh History
  • Gerard: j'espère que tous sont en train d'être bem
    Hoje às 13:28
  • Gerard: Boas tardes
    Hoje às 13:26
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana   4tj97u<z
    Hoje às 11:51
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    Hoje às 03:29
  • yaro-82: 1994
    07 de Setembro de 2025, 16:49
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  43e5r6
    07 de Setembro de 2025, 10:52
  • j.s.: tenham um excelente fim de semana  49E09B4F
    06 de Setembro de 2025, 17:07
  • j.s.: dgtgtr a todos  4tj97u<z
    06 de Setembro de 2025, 17:07
  • FELISCUNHA: Boa tarde pessoal  49E09B4F bom fim de semana  htg6454y
    05 de Setembro de 2025, 14:53
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    05 de Setembro de 2025, 03:10
  • cereal killa: dgtgtr pessoal  4tj97u<z
    03 de Setembro de 2025, 15:26
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    01 de Setembro de 2025, 11:36
  • j.s.: de regresso a casa  535reqef34
    31 de Agosto de 2025, 20:21
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Agosto de 2025, 20:21
  • FELISCUNHA: ghyt74   49E09B4e bom fim de semana  4tj97u<z
    30 de Agosto de 2025, 11:48
  • henrike: try65hytr     k7y8j0
    29 de Agosto de 2025, 21:52
  • JPratas: try65hytr Pessoal 4tj97u<z 2dgh8i classic k7y8j0
    29 de Agosto de 2025, 03:57
  • cereal killa: dgtgtr pessoal  2dgh8i
    27 de Agosto de 2025, 12:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    24 de Agosto de 2025, 11:26
  • janstu10: reed
    24 de Agosto de 2025, 10:52

Autor Tópico: Health Data 101  (Lida 127 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 124987
  • Karma: +0/-0
Health Data 101
« em: 30 de Setembro de 2022, 11:58 »


Last updated 12/2019
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
Language: English | Size: 227.17 MB | Duration: 0h 59m

An Introduction to Health Data for data analysts

What you'll learn
Introduction to Health Data - sources, types, uses
Introduction to Diagnosis, medical procedure, drug, laboratory codes
Features of health data that enhance analyses
Issues with health data and how to practically handle these
Requirements
No
Though some experience working in a clinical or health insurance setting could further contextualize the content
Description
This is an introductory course for health data, from the perspective of data analysts.Health data connects complex health care systems. An understanding of health data is fundamental to health analytics.The content is pitched at entry level health data analysts.Through this course, you will gain a highly valuable skill in the healthcare sectorunderstand how health data records information about each patient and medical encounterlearn a few features of health data that enable you to perform more insightful analysesbe able to communicate more effectively with clinical and analytic colleaguesbe empowered to improve care processes and make a difference to many people's health and livesThe 4 sections we will cover Where health data come from: 5 main sources including health insurance claims and EHRWhat health data look like: Structured and Unstructured dataFeatures of health data: Hierarchical structures, Disease etiology, chronology, supply vs demandIssues of health data: Gaps, Errors, and how to practically deal with theseNEW!!! 2 Bonus Sections from my Predictive Modeling course on Planning and Getting buy in for an analysis.
Overview
Section 1: Where Health Data Come From
Lecture 1 Introduction
Lecture 2 Health Insurance Claims
Lecture 3 Electronic Health Records
Lecture 4 Research Reports
Lecture 5 Public Health
Lecture 6 Wearables
Section 2: What Health Data Look Like
Lecture 7 Structured Data
Lecture 8 Unstructured Data
Section 3: Features of Health Data
Lecture 9 Hierarchical structure - Diagnoses
Lecture 10 Hierarchical structure - Drugs
Lecture 11 Hierarchical structure - Procedures
Lecture 12 Hierarchical structure - LOINCs and other
Lecture 13 Disease Etiology, Chronology, Supply vs Demand
Section 4: Issues of Health Data
Lecture 14 Gaps
Lecture 15 Errors Examples/Corrections & Data Use Considerations
Lecture 16 Completion and Wrap Up!
Section 5: Bonus sections from my Predictive Modeling course
Lecture 17 Planning the analysis
Lecture 18 Getting Buy in for the analysis
Data Analysts,Medical Office Practice Managers,Anyone who works with health data,Clinical Coders


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/84e643e2261978b11dd01794fc88dc0f/jxzft.Health.Data.101.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/C0ea5b9C7040c506/jxzft.Health.Data.101.rar

nitroflare.com:
Citar
https://nitroflare.com/view/AE333AF835B8BCB/jxzft.Health.Data.101.rar

1dl.net:
Citar
https://1dl.net/6wp4f7v52q9b/jxzft.Health.Data.101.rar.html