* Cantinho Satkeys

Refresh History
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana   4tj97u<z
    15 de Fevereiro de 2025, 16:34
  • j.s.: tenham um excelente fim de semana  49E09B4F
    14 de Fevereiro de 2025, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    14 de Fevereiro de 2025, 17:06
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    14 de Fevereiro de 2025, 11:24
  • cereal killa: ghyt74 pessoal  classic
    14 de Fevereiro de 2025, 10:08
  • JPratas: try65hytr Pessoal  classic k7y8j0 h7ft6l
    14 de Fevereiro de 2025, 03:52
  • JPratas: dgtgtr A Todos  4tj97u<z k7y8j0 yu7gh8
    13 de Fevereiro de 2025, 18:08
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    13 de Fevereiro de 2025, 11:32
  • j.s.: try65hytr a todos  4tj97u<z
    12 de Fevereiro de 2025, 21:00
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    08 de Fevereiro de 2025, 11:36
  • j.s.: tenham um excelente fim de semana  43e5r6 49E09B4F
    07 de Fevereiro de 2025, 20:23
  • j.s.: try65hytr a todos  4tj97u<z
    07 de Fevereiro de 2025, 20:23
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    07 de Fevereiro de 2025, 11:24
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    07 de Fevereiro de 2025, 04:15
  • j.s.: dgtgtr a todos  49E09B4F
    06 de Fevereiro de 2025, 14:24
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    05 de Fevereiro de 2025, 11:33
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    05 de Fevereiro de 2025, 02:35
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana   4tj97u<z
    01 de Fevereiro de 2025, 11:59
  • j.s.: tenham um excelente fim de semana  49E09B4F
    31 de Janeiro de 2025, 21:20
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Janeiro de 2025, 21:20

Autor Tópico: Developing and Deploying Applications with Streamlit  (Lida 73 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Moderador Global
  • ***
  • Mensagens: 118061
  • Karma: +0/-0
Developing and Deploying Applications with Streamlit
« em: 25 de Setembro de 2022, 05:31 »


Published 09/2022
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 27 lectures (2h 8m) | Size: 704.8 MB
The fastest way to build and share data apps.

What you'll learn
Streamlit and its usefulness.
Streamlit's features that help up build web , data and machine learning application
Deploying streamlit applications on streamlit cloud
Personal Portfolio page hosted on streamlit cloud
Requirements
Basic knowledge of Python programing language
Willingness to learn or know SciKit Learn
Basic knowledge of HTML CSS
Willingness to learn or have prior knowledge of GitHub
Description
Streamlit is an open-source app framework for Machine Learning and Data Science teams.
Streamlit lets you turn data scripts into shareable web apps in minutes. It's all Python, open-source, and free! And once you've created an app you can use our cloud platform to deploy, manage, and share your app!
In this course we will cover everything you need to know concerning streamlit such as
Installing Anaconda and create a virtual env
Installing Streamlit , pytube, firebase
Setting up GitHub account if you already don't have one
Display Information with Streamlit
Widgets with Streamlit
Working with data frames ( Loading , Displaying )
Implement a Linear regression Using the Scikit-Learn
Using Streamlit convert linear regression model into a web app
Implement Random Forest Using the Scikit-Learn
Using Streamlit convert Random Forest into a web app
Creating a image filter ( we use popular Instagram filters)
Creating a YouTube video downloader (using pytube api)
pytube is a lightweight, dependency-free Python library which is used for downloading videos from the web
Introduction to Multipage Apps
Structuring multipage apps
Run a multipage app
Adding pages
Creating a No-SQL Web app (community job board) using firebase
Creating a example dashboard with streamlit
Creating a personal portfolio page with streamlit
Deploy Application with Streamlit
Future Reading and lifetime access to any future streamlit projects added
Who this course is for
Anyone who is interested Python and Machine Learning
If you want to have a free portfolio page

Download link

rapidgator.net:
Citar
https://rapidgator.net/file/3dead9eae396e14b1f8a679877d051e2/levlz.Developing.and.Deploying.Applications.with.Streamlit.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/2c6d35F62ef8af15/levlz.Developing.and.Deploying.Applications.with.Streamlit.rar

nitroflare.com:
Citar
https://nitroflare.com/view/403C7E7C43E5775/levlz.Developing.and.Deploying.Applications.with.Streamlit.rar

1dl.net:
Citar
https://1dl.net/kjq3ma8w1joo/levlz.Developing.and.Deploying.Applications.with.Streamlit.rar.html