* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33

Autor Tópico: Deep Learning for NLP - Part 4  (Lida 74 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115810
  • Karma: +0/-0
Deep Learning for NLP - Part 4
« em: 13 de Agosto de 2021, 14:30 »
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
Language: English | Size: 1.23 GB | Duration: 2h 45m

What you'll learn
Deep Learning for Natural Language Processing
Introduction to cross-lingual training
Cross lingual benchmarks: XLNI, XGLUE, XTREME, XTREME-R
Cross lingual models: mBERT, XLM, Unicoder, XLM-R, BERT with adaptors, XNLG, mBART, InfoXLM, FILTER, mT5
DL for NLP
Requirements
Basics of machine learning
Basic understanding of Transformer based models and word embeddings
Transformer Models like BERT and BART
Description
This course is a part of "Deep Learning for NLP" Series. In this course, I will introduce concepts like Cross lingual benchmarks and models. These concepts form the base for multi-lingual and cross-lingual processing using advanced deep learning models for natural language understanding and generation across languages.

Often times, I hear from various product teams: "My product is in en-US only. I want to quickly scale to global markets with cost-effective solutions.", or "I have a new feature. How can I sim-ship to multiple markets?" This course is motivated by such needs. In this course the goal is to try to answer such questions.

The course consists of two main sections as follows. In both the sections, I will talk about some cross-lingual models as well as benchmarks.

In the first section, I will talk about cross-lingual benchmark datasets like XNLI and XGLUE. I will also talk about initial cross-lingual models like mBERT, XLM, Unicoder, XLM-R, and BERT with adaptors. Most of these models are encoder-based models. We will also talk about basic ways of cross-lingual modeling like translate-train, translate-test, multi-lingual translate-train-all, and zero shot cross-lingual transfer.

In the second section, I will talk about cross-lingual benchmark datasets like XTREME and XTREME-R. I will also talk about cross-lingual models like XNLG, mBART, InfoXLM, FILTER and mT5. Some of these models are encoder-only models like InfoXLM or FILTER while others can be used for encoder-decoder cross-lingual modeling like XNLG, mBART and mT5.

For each model, we will discuss specific pretraining losses, pretraining strategy, architecture and results obtained for pretraining as well as downstream tasks.

Who this course is for:
Beginners in deep learning
Python developers interested in data science concepts
Masters or PhD students who wish to learn deep learning concepts quickly

Screenshots


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction