* Cantinho Satkeys

Refresh History
  • okapa:
    24 de Dezembro de 2025, 19:01
  • sacana10: A todos um feliz natal
    24 de Dezembro de 2025, 17:57
  • cereal killa: dgtgtr passei por ca para vos desejar feliz natal e familias  :smiles_natal:
    24 de Dezembro de 2025, 15:46
  • bruno mirandela: deso a todos um feliz natal
    24 de Dezembro de 2025, 14:31
  • FELISCUNHA: ghyt74   :34rbzg9:  e bom natal  :13arvoresnatalmagiagifs:
    24 de Dezembro de 2025, 10:15
  • tgh12: mikrotik
    24 de Dezembro de 2025, 07:49
  • tgh12: Spanish for Beginners: Spanish from 0 to Conversational
    24 de Dezembro de 2025, 04:57
  • JPratas: try65hytr Pessoal  4tj97u<z
    24 de Dezembro de 2025, 03:03
  • m1957: Para toda a equipa e membros deste fórum, desejo um Natal feliz e que o novo ano de 2026, seja muito próspero a todos os níveis.
    24 de Dezembro de 2025, 00:47
  • FELISCUNHA: Bom dia pessoal   :34rbzg9:
    22 de Dezembro de 2025, 10:35
  • j.s.: :13arvoresnatalmagiagifs:
    21 de Dezembro de 2025, 19:01
  • j.s.: try65hytr a todos  :smiles_natal: :smiles_natal:
    21 de Dezembro de 2025, 19:01
  • FELISCUNHA: ghyt74  49E09B4F  e bom fim de semana  4tj97u<z
    20 de Dezembro de 2025, 11:20
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 classic dgf64y
    19 de Dezembro de 2025, 05:26
  • cereal killa: ghyt74 e boa semana de chuva e frio  RGG45wj erfb57j
    15 de Dezembro de 2025, 11:26
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    14 de Dezembro de 2025, 09:28
  • j.s.: tenham um excelente fim de semana com muitas comprinhas  :13arvoresnatalmagiagifs: sdfgsdg
    13 de Dezembro de 2025, 14:58
  • j.s.: dgtgtr a todos  :smiles_natal:
    13 de Dezembro de 2025, 14:57
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana   :34rbzg9:
    13 de Dezembro de 2025, 12:29
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i classic bve567o+
    12 de Dezembro de 2025, 05:34

Autor Tópico: Let's Make Recommendation Systems Easy with Live Projects  (Lida 135 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Let's Make Recommendation Systems Easy with Live Projects
« em: 10 de Julho de 2021, 12:01 »

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 38 lectures (2h 19m) | Size: 923.4 MB
Python, Recommendation Engine, Data Science, Machine Learning, Artificial Intelligence, Natural Language Processing(NLP)

What you'll learn:
Recommendation Engine , Python, Data Science, Artificial Intelligence, Machine Learning
Natural Language Processing (NLP), Cosine Similarity

Requirements
Python Programming

Description
This Course is designed for all Data Science & Machine Learning students, who are looking to understand "How to Build a Recommendation System from Scratch".

In this course you will master various recommendation engines including Popularity Based, Content Based, Collaborative Filtering, Singular Value Decomposition(SVD), NLP and much more.

In the course you will learn about:

What is Recommendation Systems

How Big Tech Companies are using it

Type of different Recommendation Systems

How to Implement these in Python

What are Popularity Based Recommendation System

What are Content Based Recommendation System

What are Bag Of Word(BoW)

What is TFidf

How Natural Language Processing is used in defining a Recommendation System

What is Collaborative Filtering Recommendation System

How Singular Value Decomposition (SVD) can be utilized in Recommendation Systems

What are the various advantages and disadvantages of Recommendation System

Building your own Recommendation System using Python Programming.

Who this course is for:

Software Developers, Data Scientists, Python Developers interested in learning and applying machine learning concepts using recommendation systems

Software Developers looking to transition into an e-commerce company

College students who are looking to learn a new technology and implement in final year projects.

In this course you will work on 3 projects on different industry grade recommendation engines and will implement the learnings form the course.

I can assure you will enjoy working on these projects.

Who this course is for
Learners who are looking to work as a Data Scientist


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction