* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    02 de Novembro de 2025, 11:58
  • j.s.: tenham um excelente domingo  49E09B4F
    02 de Novembro de 2025, 11:27
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2025, 11:26
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    01 de Novembro de 2025, 11:04
  • JPratas: try65hytr Pessoal  2dgh8i classic k7y8j0 yu7gh8
    31 de Outubro de 2025, 04:19
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2025, 18:51
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    30 de Outubro de 2025, 11:38
  • haruri: Delta
    29 de Outubro de 2025, 07:54
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    25 de Outubro de 2025, 12:03
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 yu7gh8
    24 de Outubro de 2025, 03:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    19 de Outubro de 2025, 11:16
  • j.s.: tenham um excelente domingo  43e5r6 49E09B4F
    19 de Outubro de 2025, 10:32
  • j.s.: ghyt74 a todos  4tj97u<z
    19 de Outubro de 2025, 10:32
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    17 de Outubro de 2025, 12:08
  • JPratas: try65hytr Pessoal  4tj97u<z htg6454y k7y8j0
    17 de Outubro de 2025, 03:34
  • j.s.: dgtgtr a todos  4tj97u<z
    15 de Outubro de 2025, 15:12
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    15 de Outubro de 2025, 11:56
  • Radio TugaNet: boas tardes
    14 de Outubro de 2025, 13:14
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    11 de Outubro de 2025, 12:06
  • JPratas: try65hytr Pessoal  49E09B4F 2dgh8i k7y8j0 yu7gh8
    10 de Outubro de 2025, 03:59

Autor Tópico: Let's Make Recommendation Systems Easy with Live Projects  (Lida 109 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 126078
  • Karma: +0/-0
Let's Make Recommendation Systems Easy with Live Projects
« em: 10 de Julho de 2021, 12:01 »

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 38 lectures (2h 19m) | Size: 923.4 MB
Python, Recommendation Engine, Data Science, Machine Learning, Artificial Intelligence, Natural Language Processing(NLP)

What you'll learn:
Recommendation Engine , Python, Data Science, Artificial Intelligence, Machine Learning
Natural Language Processing (NLP), Cosine Similarity

Requirements
Python Programming

Description
This Course is designed for all Data Science & Machine Learning students, who are looking to understand "How to Build a Recommendation System from Scratch".

In this course you will master various recommendation engines including Popularity Based, Content Based, Collaborative Filtering, Singular Value Decomposition(SVD), NLP and much more.

In the course you will learn about:

What is Recommendation Systems

How Big Tech Companies are using it

Type of different Recommendation Systems

How to Implement these in Python

What are Popularity Based Recommendation System

What are Content Based Recommendation System

What are Bag Of Word(BoW)

What is TFidf

How Natural Language Processing is used in defining a Recommendation System

What is Collaborative Filtering Recommendation System

How Singular Value Decomposition (SVD) can be utilized in Recommendation Systems

What are the various advantages and disadvantages of Recommendation System

Building your own Recommendation System using Python Programming.

Who this course is for:

Software Developers, Data Scientists, Python Developers interested in learning and applying machine learning concepts using recommendation systems

Software Developers looking to transition into an e-commerce company

College students who are looking to learn a new technology and implement in final year projects.

In this course you will work on 3 projects on different industry grade recommendation engines and will implement the learnings form the course.

I can assure you will enjoy working on these projects.

Who this course is for
Learners who are looking to work as a Data Scientist


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction