* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33

Autor Tópico: Regression Analysis for Business Managers in Python and R  (Lida 66 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115753
  • Karma: +0/-0
Regression Analysis for Business Managers in Python and R
« em: 02 de Julho de 2021, 13:44 »

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 83 lectures (4h 58m) | Size: 1.7 GB
Learn how to use Linear & Logistic Regressions by solving 2 Business Case studies in Python & R. Code templates included

What you'll learn:
Linear Regression
Logistic Regression
Pricing
Churn drivers
Data Manipulation
R and Python

Requirements
Basic math: mean, median, standard deviation

Description
Regression analysis is the most common tool at the disposal of anyone looking to analyze data. If you are looking to derive meaning insights from your data, then this course is for you.

3 reasons this course is unique:

You learn not only techniques, but you also learn about Business. The intuition tutorials have their beginning dedicated to explaining to you the relevance of the business problem. By the end of the course, you will be able to discuss matters with your stakeholders related to Pricing or Customer Churn.

Real-life experience. Coding a Regression is a matter of just a couple of lines of code. However, life is not that simple. Almost always, you get a dirty dataset that you need to transform and manipulate to make it a usable and useful dataset. The practice tutorials mirror that experience. We will go through standard techniques to:

Transform data

Visualize outliers

Assess which variables are the best to use.

We code together. In R or Python, I will guide you every step of the way, explaining all steps required to make an excellent regression analysis.

Did I pique your interest? I am looking forward to seeing you inside the course.

Who this course is for
Professionals looking to learn about regression analysis
Graduates wanting to have a practical view on Regressions
Business Managers looking into their first steps into Data Science


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction