* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33

Autor Tópico: A Complete Guide to Time Series Analysis & Forecasting in R  (Lida 72 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115743
  • Karma: +0/-0

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 142 lectures (10h 33m) | Size: 3.75 GB
A comprehensive time series analysis and forecasting course using R

What you'll learn:
Explore and visualize time series data.
Apply and interpret time series regression results.
Understand various methods to forecast time series data.
Use general forecasting tools and models for different forecasting situations.
Utilize statistical program to compute, visualize, and analyze time series data in economics, business, and the social sciences.
Use benchmark methods of time series forecasting.
Use methods for checking whether a forecasting method has adequately utilized the available information.
Forecast using exponential smoothing methods.
Stationarity, ADF, KPSS, differencing, etc.
Forecast using ARIMA, SARIMA, and ARIMAX.
Learn through plenty of rigorous examples and quizzes.

Requirements
A computer with R and Rstudio.
Basic knowledge of statistical terms, e.g., mean, median, mode, standard deviation, variance, etc.
Preferably, some knowledge of R programming.

Description
Forecasting involves making predictions. It is required in many situations: deciding whether to build another power generation plant in the next ten years requires forecasts of future demand; scheduling staff in a call center next week requires forecasts of call volumes; stocking an inventory requires forecasts of stock requirements. Forecasts can be required several years in advance (for the case of capital investments) or only a few minutes beforehand (for telecommunication routing). Whatever the circumstances or time horizons involved, forecasting is an essential aid to effective and efficient planning. This course provides an introduction to time series forecasting using R.

No prior knowledge of R or data science is required.

Emphasis on applications of time-series analysis and forecasting rather than theory and mathematical derivations.

Plenty of rigorous examples and quizzes for an extensive learning experience.

All course contents are self-explanatory.

All R codes and data sets and provided for replication and practice.

At the completion of this course, you will be able to

Explore and visualize time series data.

Apply and interpret time series regression results.

Understand various methods to forecast time series data.

Use general forecasting tools and models for different forecasting situations.

Utilize statistical programs to compute, visualize, and analyze time-series data in economics, business, and the social sciences.

You will learn

Exploring and visualizing time series in R.

Benchmark methods of time series forecasting.

Time series forecasting forecast accuracy.

Linear regression models.

Exponential smoothing.

Stationarity, ADF, KPSS, differencing, etc.

ARIMA, SARIMA, and ARIMAX (dynamic regression) models.

Other forecasting models.

Who this course is for
This course is for you if you are interested in solving economics, business, and the social sciences problems using data.
This course is for you if you are interested in learning problem solving using a statistical program.
This course is for you if you have basic knowledge of R language or are willing to learn the basic of R.


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction