* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33

Autor Tópico: Understanding Machine Learning 2021  (Lida 93 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115685
  • Karma: +0/-0
Understanding Machine Learning 2021
« em: 16 de Junho de 2021, 11:01 »
MP4 | Video: h264, 1280x720 | Audio: AAC, 44100 Hz
Language: English | Size: 669 MB | Duration: 1h 35m

What you'll learn
What are models in Machine Learning?
How to build models for Machine Learning?
How does Machine Learning build a Linear Regression model?

Requirements
Some knowledge of programming in any language is essential.
Description
Machine Learning is becoming ubiquitous across all industries. Already many applications have been identified which use Machine Learning now. Few examples include Spam Detection, Face Recognition, Emotion Analysis, Object Detection, Credit Card Fraud Detection, Weather Prediction, and the list is almost endless. More new applications are being identified by different industries almost everyday.

It is not just about applying superior technology for traditional problems when we apply Machine Learning. It is also about business sense since applying Machine Learning, we can make experiments and applications much more economical.

This course is a result of a discussion among my Project Team from our cohort in IIT, Kanpur learning Cyber Security. We have embarked to create a product for Malware Detection using Machine Learning. While all of us are getting grips on Malware Analysis, the team needed some inputs of Machine Learning. To fill the gap, I conducted some sessions with our Project Team members on Machine Learning. This course is a collection of the recording of these sessions.

This course discusses what are Machine Learning Algorithms. We discuss Random Forest Algorithm and Linear Regression as examples to understand what are models in Machine Learning. We see how to implement such models using Python. During the discussion on the development of the Machine Learning models, we discuss the various steps like Data Preprocessing, Normalisation, Scaling, etc. We touch upon the basics of Neural Network and take a slight deep dive into Regression. The course includes discussion on concepts like what is overfitting, what is hyper-parameter tuning, etc.

This course tries to give an idea for what it takes to create a product which uses Machine Learning. I believe that the discussions can get one started to apply Machine Learning to many problems.

Who this course is for:
Students
Professionals
Engineers
Researchers

Screenshots


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction