* Cantinho Satkeys

Refresh History
  • Gerard: j'espère que tous sont en train d'être bem
    12 de Setembro de 2025, 13:28
  • Gerard: Boas tardes
    12 de Setembro de 2025, 13:26
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana   4tj97u<z
    12 de Setembro de 2025, 11:51
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    12 de Setembro de 2025, 03:29
  • yaro-82: 1994
    07 de Setembro de 2025, 16:49
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  43e5r6
    07 de Setembro de 2025, 10:52
  • j.s.: tenham um excelente fim de semana  49E09B4F
    06 de Setembro de 2025, 17:07
  • j.s.: dgtgtr a todos  4tj97u<z
    06 de Setembro de 2025, 17:07
  • FELISCUNHA: Boa tarde pessoal  49E09B4F bom fim de semana  htg6454y
    05 de Setembro de 2025, 14:53
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    05 de Setembro de 2025, 03:10
  • cereal killa: dgtgtr pessoal  4tj97u<z
    03 de Setembro de 2025, 15:26
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    01 de Setembro de 2025, 11:36
  • j.s.: de regresso a casa  535reqef34
    31 de Agosto de 2025, 20:21
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Agosto de 2025, 20:21
  • FELISCUNHA: ghyt74   49E09B4e bom fim de semana  4tj97u<z
    30 de Agosto de 2025, 11:48
  • henrike: try65hytr     k7y8j0
    29 de Agosto de 2025, 21:52
  • JPratas: try65hytr Pessoal 4tj97u<z 2dgh8i classic k7y8j0
    29 de Agosto de 2025, 03:57
  • cereal killa: dgtgtr pessoal  2dgh8i
    27 de Agosto de 2025, 12:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    24 de Agosto de 2025, 11:26
  • janstu10: reed
    24 de Agosto de 2025, 10:52

Autor Tópico: Understanding Machine Learning 2021  (Lida 134 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 124987
  • Karma: +0/-0
Understanding Machine Learning 2021
« em: 16 de Junho de 2021, 11:01 »
MP4 | Video: h264, 1280x720 | Audio: AAC, 44100 Hz
Language: English | Size: 669 MB | Duration: 1h 35m

What you'll learn
What are models in Machine Learning?
How to build models for Machine Learning?
How does Machine Learning build a Linear Regression model?

Requirements
Some knowledge of programming in any language is essential.
Description
Machine Learning is becoming ubiquitous across all industries. Already many applications have been identified which use Machine Learning now. Few examples include Spam Detection, Face Recognition, Emotion Analysis, Object Detection, Credit Card Fraud Detection, Weather Prediction, and the list is almost endless. More new applications are being identified by different industries almost everyday.

It is not just about applying superior technology for traditional problems when we apply Machine Learning. It is also about business sense since applying Machine Learning, we can make experiments and applications much more economical.

This course is a result of a discussion among my Project Team from our cohort in IIT, Kanpur learning Cyber Security. We have embarked to create a product for Malware Detection using Machine Learning. While all of us are getting grips on Malware Analysis, the team needed some inputs of Machine Learning. To fill the gap, I conducted some sessions with our Project Team members on Machine Learning. This course is a collection of the recording of these sessions.

This course discusses what are Machine Learning Algorithms. We discuss Random Forest Algorithm and Linear Regression as examples to understand what are models in Machine Learning. We see how to implement such models using Python. During the discussion on the development of the Machine Learning models, we discuss the various steps like Data Preprocessing, Normalisation, Scaling, etc. We touch upon the basics of Neural Network and take a slight deep dive into Regression. The course includes discussion on concepts like what is overfitting, what is hyper-parameter tuning, etc.

This course tries to give an idea for what it takes to create a product which uses Machine Learning. I believe that the discussions can get one started to apply Machine Learning to many problems.

Who this course is for:
Students
Professionals
Engineers
Researchers

Screenshots


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction