* Cantinho Satkeys

Refresh History
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    11 de Julho de 2025, 03:54
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    10 de Julho de 2025, 10:40
  • j.s.: dgtgtr a todos  4tj97u<z
    07 de Julho de 2025, 13:50
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    06 de Julho de 2025, 11:43
  • j.s.: [link]
    05 de Julho de 2025, 16:31
  • j.s.: dgtgtr a todos  4tj97u<z
    05 de Julho de 2025, 16:31
  • j.s.: h7t45 ao convidado de Honra batatinha pela sua ajuda
    05 de Julho de 2025, 16:30
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    04 de Julho de 2025, 11:58
  • JPratas: dgtgtr Pessoal  101041 Vamos Todos Ajudar na Manutenção do Forum, Basta 1 Euro a Cada Um  43e5r6
    03 de Julho de 2025, 19:02
  • cereal killa: Todos os anos e preciso sempre a pedir esmolas e um simples gesto de nem que seja 1€ que fosse dividido por alguns ajudava, uma coisa e certa mesmo continuando isto vai levar volta a como se tem acesso aos tópicos, nunca se quis implementar esta ideia mas quem não contribuir e basta 1 € por ano não terá acesso a sacar nada, vamos ver desenrolar disto mais ate dia 7,finalmente um agradecimento em nome do satkeys a quem já fez a sua doação, obrigada
    03 de Julho de 2025, 15:07
  • m1957: Por favor! Uma pequena ajuda, não deixem que o fórum ecerre. Obrigado!
    03 de Julho de 2025, 01:10
  • j.s.: [link]
    02 de Julho de 2025, 21:09
  • j.s.: h7t45 ao membro anónimo pela sua ajuda  49E09B4F
    02 de Julho de 2025, 21:09
  • j.s.: dgtgtr a todos  4tj97u<z
    01 de Julho de 2025, 17:18
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    29 de Junho de 2025, 11:59
  • m1957: Foi de boa vontade!
    28 de Junho de 2025, 00:39
  • j.s.: passem f.v. por aqui [link]    h7t45
    27 de Junho de 2025, 17:20
  • j.s.: renovamos o nosso pedido para uma pequena ajuda para pagemento  do nosso forum
    27 de Junho de 2025, 17:19
  • j.s.: h7t45 aos convidados de honra Felizcunha e M1957 pela ajuda
    27 de Junho de 2025, 17:15
  • j.s.: dgtgtr a todos  4tj97u<z
    27 de Junho de 2025, 17:13

Autor Tópico: Derivation of the energy spectrum of the hydrogen atom  (Lida 126 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 121842
  • Karma: +0/-0
Derivation of the energy spectrum of the hydrogen atom
« em: 16 de Junho de 2021, 10:01 »

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 10 lectures (2h 1m) | Size: 1 GB
Quantum physics and Schrodinger equation applied to the Hydrogen atom

What you'll learn:
How to derive the discrete energy spectrum of a hydrogen-like atom from the Schrodinger equation
How to use the method of separation of variables to solve the Schrodinger equation

Requirements
Calculus, Multivariable Calculus (especially: derivatives, the Laplacian, spherical coordinates)
Concept of potential energy, Coulomb interaction
Some familiarity with the Schrodinger equation (not how to solve it, but what it is, what the wave function and Hamiltonian are)
complex exponentials
Some familiarity with ordinary differential equations

Description
In this course the discrete energy spectrum of hydrogen-like atoms is derived from the Schrodinger equation. In the following, the history of this important discovery is contextualized.

In the early 20th century, Ernest Rutherford performed some experiments that established that atoms consisted of negatively charged electrons surrounding a small, dense, positively charged nucleus. From the experimental data, Rutherford was led to consider a planetary model of the atom, the Rutherford model of 1911. This had electrons orbiting a nucleus, but involved a technical difficulty: the laws of classical mechanics predict that the electron will release electromagnetic radiation while orbiting a nucleus. Because the electron would lose energy, it would rapidly collapse into the nucleus in a very minuscule amount of time (of the order of picoseconds). This model of the atom is disastrous because it predicts that all atoms are unstable. However, late 19th-century experiments had shown that atoms will only emit light (that is, electromagnetic radiation) at certain discrete frequencies.

To overcome the problems of Rutherford's atom, in 1913 Niels Bohr put forth a new model which would correctly describe the energy levels of hydrogen-like atoms.

In 1925, a new kind of mechanics was proposed, quantum mechanics, in which Bohr's model of electrons traveling in quantized orbits was extended into a more accurate model of electron motion. The new theory was proposed by Werner Heisenberg. Another form of the same theory, wave mechanics, was discovered by the famous Austrian physicist Erwin Schrödinger independently, and by different reasoning. Schrödinger employed de Broglie's matter waves, but sought wave solutions of a three-dimensional wave equation describing electrons that were constrained to move about the nucleus of a hydrogen-like atom, by being trapped by the potential of the positive nuclear charge.

Who this course is for
Students who want to understand the mathematics behind the energy spectrum of the hydrogen atom


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction