* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33

Autor Tópico: Unsupervised Machine Learning with Python  (Lida 84 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115675
  • Karma: +0/-0
Unsupervised Machine Learning with Python
« em: 02 de Maio de 2021, 10:35 »
MP4 | Video: h264, 1280x720 | Audio: AAC, 44100 Hz
Language: English | Size: 4.18 GB | Duration: 9h 21m

What you'll learn
Clustering Algorithms: Hierarchical, DBSCAN, K Means, Gaussian Mixture Model
Dimensions Reduction: Principal Component Analysis (PCA)
Implementation of clustering algorithms and principal component analysis in Python
Applications of clustering and PCA using real world data
Requirements
Basic knowledge of Linear Algebra including vectors, matrices, transpose, matrix multiplications, linear spaces
Basic knowledge of Probability and Statistics including mean, covariance, and normal distributions
Ability to program in Python 3
Ability to run Python 3 programs on local machine in Jupyter notebooks and command window
Description
Unsupervised Machine Learning involves finding patterns in datasets.

After taking this course, students will be able to understand, implement in Python, and apply algorithms of Unsupervised Machine Learning to real-world datasets.

This course is designed for:

Scientists, engineers, and programmers and others interested in machine learning/data science

No prior experience with machine learning is needed

Students should have knowledge of

Basic linear algebra (vectors, transpose, matrices, matrix multiplication, inverses, determinants, linear spaces)

Basic probability and statistics (mean, covariance matrices, normal distributions)

Python 3 programming

The core of this course involves detailed study of the following algorithms:

Clustering: Hierarchical, DBSCAN, K Means & Gaussian Mixture Model

Dimension Reduction: Principal Component Analysis

The course presents the math underlying these algorithms including normal distributions, expectation maximization, and singular value decomposition. The course also presents detailed explanation of code design and implementation in Python, including use of vectorization for speed up, and metrics for measuring quality of clustering and dimension reduction.

The course codes are then used to address case studies involving real-world data to perform dimension reduction/clustering for the Iris Flowers Dataset, MNIST Digits Dataset (images), and BBC Text Dataset (articles).

Plenty of examples are presented and Descriptions and animations are used to help students get a better understanding of the algorithms.

Course also includes a number of exercises (theoretical, Jupyter Notebook, and programming) for students to gain additional practice.

All resources (presentations, supplementary documents, demos, codes, solutions to exercises) are downloadable from the course Github site.

Students should have a Python installation, such as the Anaconda platform, on their machine with the ability to run programs in the command window and in Jupyter Notebooks

Who this course is for:
Scientists, engineers and programmers interested in data science/machine learning

Screenshots

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction