* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33

Autor Tópico: Data Mining for Business in Python 2021  (Lida 94 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115675
  • Karma: +0/-0
Data Mining for Business in Python 2021
« em: 25 de Abril de 2021, 11:33 »

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 137 lectures (8h 51m) | Size: 2.62 GB
9 Data Mining algorithms for Data Science, Machine Learning and Explainable Artificial Intelligence. 18 Case Studies

What you'll learn:
Survival Analysis
Cox Proportional Hazard Regression
CHAID
Cluster Analysis - Gaussian Mixture Model
Rule Learning Association
Random Forest
LIME
SHAP
Data Mining
Principal Component Analysis
XGBoost
Manifold Learning

Requirements
Statistics - Linear and Logistic Regression
Basic Python

Description
Are you looking to learn how to do Data Mining like a pro? You have come to the right place.

Welcome to the most exciting Data Mining course in Python. I will show you the most impactful algorithms that I have witnessed in my professional career to derive meaningful insights.

In the age of endless spreadsheets, it is easy to feel overwhelmed with so much data. This is where Data Mining techniques come in. To swiftly analyze, find patterns, and deliver an outcome to you. For me, the Data Mining value added is that you stop the number crunching and pivot table creation, leaving time to come with actionable plans based on the insights.

Now, why should you enroll in the course? Let me give you four reasons.

The first is that y ou will learn the models' intuition without focusing too much on the math. It is crucial that you know why a model makes sense and the underlying assumptions behind it. I will explain to you each model using words, graphs, and metaphors, leaving math and the Greek alphabet to the bare minimum.

The second reason is the thorough course structure of the most impactful Data Mining techniques. Based on my experience, the course curriculum has the algorithms I believe to be most impactful, up-to-date, and sought after. Here is the list of the algorithms we will learn:

Supervised Learning

Survival Analysis

Cox Proportional Hazard Regression

CHAID

Unsupervised Learning

Cluster Analysis - Gaussian Mixture Model

Dimension Reduction - PCA and Manifold Learning

Rule Learning Association

· Explainable Artificial Intelligence

Random Forest and Feature Importance

LIME

XGBoost and SHAP

The third reason is that we code together, line by line . Programming is challenging, especially for beginners. I will guide you through every code snippet. I will also explain all parameters and functions that you need to use, step by step. In the end, you will have code templates ready to use in your problems.

The final reason is that you practice, practice, practice. At the end of each section, there is a challenge. The goal is that you apply immediately what you have learned. I give you a dataset and a list of actions you need to take to solve it. I think it is the best way to really cement all the techniques in you. Hence, there will be 2 case studies per technique.

I hope to have spiked your interest, and I am looking forward to seeing you inside!

Who this course is for
People looking to learn Data Mining algorithms


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction