* Cantinho Satkeys

Refresh History
  • okapa:
    24 de Dezembro de 2025, 19:01
  • sacana10: A todos um feliz natal
    24 de Dezembro de 2025, 17:57
  • cereal killa: dgtgtr passei por ca para vos desejar feliz natal e familias  :smiles_natal:
    24 de Dezembro de 2025, 15:46
  • bruno mirandela: deso a todos um feliz natal
    24 de Dezembro de 2025, 14:31
  • FELISCUNHA: ghyt74   :34rbzg9:  e bom natal  :13arvoresnatalmagiagifs:
    24 de Dezembro de 2025, 10:15
  • tgh12: mikrotik
    24 de Dezembro de 2025, 07:49
  • tgh12: Spanish for Beginners: Spanish from 0 to Conversational
    24 de Dezembro de 2025, 04:57
  • JPratas: try65hytr Pessoal  4tj97u<z
    24 de Dezembro de 2025, 03:03
  • m1957: Para toda a equipa e membros deste fórum, desejo um Natal feliz e que o novo ano de 2026, seja muito próspero a todos os níveis.
    24 de Dezembro de 2025, 00:47
  • FELISCUNHA: Bom dia pessoal   :34rbzg9:
    22 de Dezembro de 2025, 10:35
  • j.s.: :13arvoresnatalmagiagifs:
    21 de Dezembro de 2025, 19:01
  • j.s.: try65hytr a todos  :smiles_natal: :smiles_natal:
    21 de Dezembro de 2025, 19:01
  • FELISCUNHA: ghyt74  49E09B4F  e bom fim de semana  4tj97u<z
    20 de Dezembro de 2025, 11:20
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 classic dgf64y
    19 de Dezembro de 2025, 05:26
  • cereal killa: ghyt74 e boa semana de chuva e frio  RGG45wj erfb57j
    15 de Dezembro de 2025, 11:26
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    14 de Dezembro de 2025, 09:28
  • j.s.: tenham um excelente fim de semana com muitas comprinhas  :13arvoresnatalmagiagifs: sdfgsdg
    13 de Dezembro de 2025, 14:58
  • j.s.: dgtgtr a todos  :smiles_natal:
    13 de Dezembro de 2025, 14:57
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana   :34rbzg9:
    13 de Dezembro de 2025, 12:29
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i classic bve567o+
    12 de Dezembro de 2025, 05:34

Autor Tópico: Question Generation using Natural Language processing  (Lida 212 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Question Generation using Natural Language processing
« em: 31 de Março de 2021, 16:08 »
MP4 | Video: h264, 1280x720 | Audio: AAC, 44100 Hz
Language: English | Size: 1.39 GB | Duration: 4h 2m

What you'll learn
Generate assessments like MCQs, True/False questions etc from any content using state-of-the-art natural language processing techniques.
Apply recent advancements like BERT, OpenAI GPT-2, and T5 transformers to solve real-world problems in edtech.
Use NLP libraries like Spacy, NLTK, AllenNLP, HuggingFace transformers, etc.
Use Google Colab environment to run all these algorithms.

Requirements
Python, data structures, deep learning and basic familiarity with Pytorch.
Description
This course focuses on using state-of-the-art Natural Language processing techniques to solve the problem of question generation in edtech.

If we pick up any middle school textbook, at the end of every chapter we see assessment questions like MCQs, True/False questions, Fill-in-the-blanks, Match the following, etc. In this course, we will see how we can take any text content and generate these assessment questions using NLP techniques.

This course will be a very practical use case of NLP where we put basic algorithms like word vectors (word2vec, Glove, etc) to recent advancements like BERT, openAI GPT-2, and T5 transformers to real-world use.

We will use NLP libraries like Spacy, NLTK, AllenNLP, HuggingFace transformers, etc.

All the sections will be accompanied by easy to use Google Colab notebooks. You can run Google Colab notebooks for free on the cloud and also train models using free GPUs provided by Google.

Prerequisites:

This course will focus on the practical use cases of algorithms. A high-level introduction to the algorithms used will be introduced but the focus is not on the mathematics behind the algorithms.

A high-level understanding of deep learning concepts like forward pass, backpropagation, optimizers, loss functions is expected.

Strong Python programming skills with basic knowledge of Natural Language processing and Pytorch is assumed.

The course outline :

➤ Generate distractors (wrong choices) for MCQ options

Students will use several approaches like Wordnet, ConceptNet, and Sense2vec to generate distractors for MCQ options.

➤ Generate True or False questions using pre-trained models like sentence BERT, constituency parser, and OpenAI GPT-2

Students will learn to use constituency parser from AllenNLP to split any sentence. They will learn to use GPT-2 to generate sentences with alternate endings and filter them with Sentence BERT.

➤ Generate MCQs from any content by training a T5 transformer model using the HuggingFace library.

Students will understand the T5 transformer algorithm and use SQUAD dataset to train a question generation model using HuggingFace Transformers library and Pytorch Lightning.

➤ Generate Fill in the blanks questions

Students will learn to use Python Keyword extraction library to extract keywords, use flashtext library to do fast keyword matching, and visualize fill-in-the-blanks using HTML ElementTree in Colab

➤ Generate Match the following questions.

Students will learn to use Python Keyword extraction library to extract keywords, use flashtext library to do fast keyword matching, and use BERT to do word sense disambiguation (WSD).

Who this course is for:
Data science students with intermediate skillset in Python and Deep learning.

Screenshots


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction