* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    02 de Novembro de 2025, 11:58
  • j.s.: tenham um excelente domingo  49E09B4F
    02 de Novembro de 2025, 11:27
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2025, 11:26
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    01 de Novembro de 2025, 11:04
  • JPratas: try65hytr Pessoal  2dgh8i classic k7y8j0 yu7gh8
    31 de Outubro de 2025, 04:19
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2025, 18:51
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    30 de Outubro de 2025, 11:38
  • haruri: Delta
    29 de Outubro de 2025, 07:54
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    25 de Outubro de 2025, 12:03
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 yu7gh8
    24 de Outubro de 2025, 03:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    19 de Outubro de 2025, 11:16
  • j.s.: tenham um excelente domingo  43e5r6 49E09B4F
    19 de Outubro de 2025, 10:32
  • j.s.: ghyt74 a todos  4tj97u<z
    19 de Outubro de 2025, 10:32
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    17 de Outubro de 2025, 12:08
  • JPratas: try65hytr Pessoal  4tj97u<z htg6454y k7y8j0
    17 de Outubro de 2025, 03:34
  • j.s.: dgtgtr a todos  4tj97u<z
    15 de Outubro de 2025, 15:12
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    15 de Outubro de 2025, 11:56
  • Radio TugaNet: boas tardes
    14 de Outubro de 2025, 13:14
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    11 de Outubro de 2025, 12:06
  • JPratas: try65hytr Pessoal  49E09B4F 2dgh8i k7y8j0 yu7gh8
    10 de Outubro de 2025, 03:59

Autor Tópico: Tensorflow Tutorial: Hands-on AI development with Tensorflow  (Lida 133 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 126273
  • Karma: +0/-0
Tensorflow Tutorial: Hands-on AI development with Tensorflow
« em: 30 de Março de 2021, 11:05 »

MP4 | h264, 1280x720 | Lang: English | Audio: aac, 44.1 KHz | 5h 47m | 3.60 GB

What you'll learn
Basics of TensorFlow 2.0
Decision Trees and Linear Regression in TensorFlow
Keras
Foundational algorithms

Description
Undoubtedly, TensorFlow is one of the most popular & widely used open-source libraries for machine learning applications. Apart from it, TensorFlow is also heavily used for dataflow and differentiable programming across a range of tasks. Because of this and a lot of other promises, hundreds of individuals are keen on exploring TensorFlow for AI & ML, Data Science, text-based application, video detection & others.

In order to cater to all our student's needs for learning TensorFlow, we have curated this exclusive practical guide. It will teach you Practical TensorFlow with more from a training perspective rather than just the theoretical knowledge.

What makes this course so unique?

It will help you in understanding both basics and the advanced concepts of TensorFlow along with the codes in a practical manner! Upon completing this course, you will be able to learn various essential aspects of this famous library. It will unfold with the basic introduction covering graphs, Keras, supervised learning and others.

In the later sections, you will learn more about AI & ML models like decision trees, linear regression & logistic regression along with evaluating models, gradient descent & digit classification. Concepts of CNN are also covered along with its architectures, layers, K-means algorithm, K-means implementation, facial recognition & others.

This course includes:

Section 1- TensorFlow 2.0, Graphs, Automatic Differentiation, Keras and TensorFlow, Intro to Machine Learning, Types of Supervised Learning.

Section 2- Decision Trees, Linear Regression, Logistic Regression, Model Evaluation.

Section 3- Gates and Forward Propagation, Complex Decision Boundaries, Backpropagation, Gradient Descent Type and Softmax, Digit Classification.

Section 4- CNN, Layers of CNN, Famous CNN Architectures.

Section 5- K-Means Algorithm, Centroid Initialization, K-Means ++, Number of Clusters, K-Means Implementation, Principal Component Analysis, Facial Recognition using PCA.

Searching for the online course that will teach you TensorFlow practically? Search no more!! Begin with this course today to get your hands dirty with TensorFlow!!

Who this course is for:
Students who want to learn practical implementation of algorithms in TensorFlow

Screenshots


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction