* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33

Autor Tópico: Mastering Data Visualization with Python 2021  (Lida 84 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115627
  • Karma: +0/-0
Mastering Data Visualization with Python 2021
« em: 03 de Março de 2021, 15:16 »

Mastering Data Visualization with Python 2021
MP4 | h264, 1280x720 | Lang: English | Audio: aac, 44100 Hz | 9h 26m | 3.85 GB
Visualize data using pandas, matDescriptionlib ans seaborn libraries for data analysis and data science

What you'll learn
Understand what Descriptions are suitable for a type of data you have
Visualize data by creating various graphs using pandas, matDescriptionlib and seaborn libraries
Requirements
Some basic knowledge of Python is expected. However this course does include a quick overview of Python knowledge required for this course.
Description
This course will help you draw meaningful knowledge from the data you have.

Three systems of data visualization in R are covered in this course:

A. Pandas B. MatDescriptionlib C. Seaborn

A. Types of graphs covered in the course using the pandas package:

Time-series: Line Description

Single Discrete Variable: Bar Description, Pie Description

Single                                                                                                                                                                                                       Continuous Variable: Histogram, Density or KDE Description, Box-Whisker Description

Two Continuous Variable: Scatter Description

Two Variable: One Continuous, One Discrete: Box-Whisker Description

B. Types of graphs using MatDescriptionlib library:

Time-series: Line Description

Single Discrete Variable: Bar Description, Pie Description

Single Continuous Variable: Histogram, Density or KDE Description, Box-Whisker Description

Two Continuous Variable: Scatter Description

In addition, we will cover subDescriptions as well, where multiple axes can be Descriptionted on a single figure.

C. Types of graphs using Seaborn library:

In this we will cover three broad categories of Descriptions:

relDescription (Relational Descriptions): Scatter Description and Line Description

disDescription (Distribution Descriptions): Histogram, KDE, ECDF and Rug Descriptions

catDescription (Categorical Descriptions): Strip Description, Swarm Description, Box Description, Violin Description, Point Description and Bar Description

In addition to these three categories, we will cover these three special kinds of Descriptions: Joint Description, Pair Description and Linear Model Description

In the end, we will discuss the customization of Descriptions by creating themes based on the style, context, colour palette and font.

Who this course is for:
Data Science, Six Sigma and other professionals interested in data visualization
Professionals interested in creating publication quality Descriptions
Professionals who are not happy with the Descriptions created in MS Excel, and see them as dull and boring

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction