* Cantinho Satkeys

Refresh History
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    21 de Abril de 2025, 10:38
  • cereal killa:
    19 de Abril de 2025, 21:17
  • j.s.: tenham uma Santa e Feliz Páscoa  49E09B4F 49E09B4F 49E09B4F
    19 de Abril de 2025, 18:19
  • j.s.:
    19 de Abril de 2025, 18:19
  • j.s.: dgtgtr a todos  4tj97u<z 4tj97u<z
    19 de Abril de 2025, 18:15
  • FELISCUNHA: Uma santa sexta feira para todo o auditório  4tj97u<z
    18 de Abril de 2025, 11:12
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    18 de Abril de 2025, 03:28
  • cereal killa: try65hytr malta  classic 2dgh8i
    14 de Abril de 2025, 23:14
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    13 de Abril de 2025, 11:45
  • j.s.: e um bom domingo de Ramos  43e5r6 43e5r6
    11 de Abril de 2025, 21:02
  • j.s.: tenham um excelente fim de semana  49E09B4F
    11 de Abril de 2025, 21:01
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Abril de 2025, 21:00
  • JPratas: try65hytr  y5r6t Pessoal  classic k7y8j0
    11 de Abril de 2025, 04:15
  • JPratas: dgtgtr A Todos  4tj97u<z classic k7y8j0
    10 de Abril de 2025, 18:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    09 de Abril de 2025, 11:59
  • cereal killa: try65hytr pessoal  2dgh8i
    08 de Abril de 2025, 23:21
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  43e5r6
    06 de Abril de 2025, 11:13
  • cccdh: Ola para todos!
    04 de Abril de 2025, 23:41
  • j.s.: tenham um excelente fim de semana  49E09B4F
    04 de Abril de 2025, 21:10
  • j.s.: try65hytr a todos  4tj97u<z
    04 de Abril de 2025, 21:10

Autor Tópico: Build Apache Spark Machine Learning Project for eCommerce  (Lida 113 vezes)

0 Membros e 2 Visitantes estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 119150
  • Karma: +0/-0
Build Apache Spark Machine Learning Project for eCommerce
« em: 28 de Outubro de 2020, 10:11 »

Build Apache Spark Machine Learning Project for eCommerce
Video: .mp4 (1280x720, 30 fps(r)) | Audio: aac, 44100 Hz, 2ch | Size: 647 MB
Genre: eLearning Video | Duration: 17 lectures (1 hour, 49 mins) | Language: English
 Build Apache Spark Machine Learning Project for eCommerce Company that sells clothes online (Revenue Prediction Model)

What you'll learn

    In this Spark Project course you will implement Predicting eCommerce Customer Revenue Prediction Project in Apache Spark (ML) using Databricks Notebook (Community edition server)
    You will be able to learn and Explore Apache Spark and Machine Learning on the Databricks platform.
    You will be able to Launching Spark Cluster
    Create a Data Pipeline
    Process that data using a Machine Learning model (Spark ML Library)
    Hands-on learning
    Real-time Use Case
    Publish the Project on Web to Impress your recruiter

Requirements

    Apache Spark basic and Scala fundamental knowledge is required and SQL Basics along with Machine Learning
    Following browsers on Windows, Linux or macOS desktop:
    Google Chrome (Latest version), Firefox (Latest version), Safari (Latest version), Microsoft Edge* (Latest version)
    Internet Explorer 11* on Windows 7, 8, or 10 (with latest Windows updates applied)
    *You might see performance degradation for some features on Microsoft Edge and Internet Explorer.
    The following browsers are not supported:
    Mobile browsers.
    Beta, "preview," or otherwise pre-release versions of desktop browsers.

Description

Build Apache Spark Machine Learning Project for an eCommerce Company that sells clothes online (Revenue Prediction Model)

We will learn the most important aspect of Spark Machine learning (Spark MLlib):

    Apache Spark fundamentals and implementing spark machine learning

    Importing and Working with Datasets

    Process data using a Machine Learning model using spark MLlib

    Build and train a Linear regression model

    Test and analyze the model

Learn the latest Big Data Technology - Spark! And learn to use it with one of the most popular programming languages, Scala!

One of the most valuable technology skills is the ability to analyze huge data sets, and this course is specifically designed to bring you up to speed on one of the best technologies for this task, Apache Spark! The top technology companies like Google, Facebook, Netflix, Airbnb, Amazon, NASA, and more are all using Spark to solve their big data problems!

Spark can perform up to 100x faster than Hadoop MapReduce, which has caused an explosion in demand for this skill! Because the Spark 3.0 DataFrame framework is so new, you now have the ability to quickly become one of the most knowledgeable people in the job market!

Project Details:

This project is about an eCommerce company that sells clothes online.

This project is about customers who buy clothes online.

The store offers in-store style and clothing advice sessions.

Customers come into the store, have sessions/meetings with a personal stylist, then they can go home and order either on a mobile app or website for the clothes they want.

We need to predict the future spending of Customer(ie Revenue for Company ) so business strategies can be made to convert "Customer" to "Loyalty Customer"

In this Data Science Machine Learning project, we will create an eCommerce Customer Revenue Prediction Project using Apache Spark Machine Learning Models using Linear Regression, one of the predictive models.

    Explore Apache Spark and Machine Learning on the Databricks platform.

    Launching Spark Cluster

    Create a Data Pipeline

    A process that data using a Machine Learning model (Spark ML Library)

    Hands-on learning

    Real-time Use Case

    Publish the Project on Web to Impress your recruiter

eCommerce Customer Revenue Prediction Project a Real-time Use Case on Apache Spark

About Databricks:

Databricks lets you start writing Spark ML code instantly so you can focus on your data problems.

Who this course is for:

    Beginner Apache Spark Developer, Bigdata Engineers or Developers, Software Developer, Machine Learning Engineer, Data Scientist

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction