* Cantinho Satkeys

Refresh History
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana   4tj97u<z
    15 de Fevereiro de 2025, 16:34
  • j.s.: tenham um excelente fim de semana  49E09B4F
    14 de Fevereiro de 2025, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    14 de Fevereiro de 2025, 17:06
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    14 de Fevereiro de 2025, 11:24
  • cereal killa: ghyt74 pessoal  classic
    14 de Fevereiro de 2025, 10:08
  • JPratas: try65hytr Pessoal  classic k7y8j0 h7ft6l
    14 de Fevereiro de 2025, 03:52
  • JPratas: dgtgtr A Todos  4tj97u<z k7y8j0 yu7gh8
    13 de Fevereiro de 2025, 18:08
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    13 de Fevereiro de 2025, 11:32
  • j.s.: try65hytr a todos  4tj97u<z
    12 de Fevereiro de 2025, 21:00
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    08 de Fevereiro de 2025, 11:36
  • j.s.: tenham um excelente fim de semana  43e5r6 49E09B4F
    07 de Fevereiro de 2025, 20:23
  • j.s.: try65hytr a todos  4tj97u<z
    07 de Fevereiro de 2025, 20:23
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    07 de Fevereiro de 2025, 11:24
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    07 de Fevereiro de 2025, 04:15
  • j.s.: dgtgtr a todos  49E09B4F
    06 de Fevereiro de 2025, 14:24
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    05 de Fevereiro de 2025, 11:33
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    05 de Fevereiro de 2025, 02:35
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana   4tj97u<z
    01 de Fevereiro de 2025, 11:59
  • j.s.: tenham um excelente fim de semana  49E09B4F
    31 de Janeiro de 2025, 21:20
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Janeiro de 2025, 21:20

Autor Tópico: Machine Learning™ - Neural Networks from Scratch [Python]  (Lida 85 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Moderador Global
  • ***
  • Mensagens: 118061
  • Karma: +0/-0
Machine Learning™ - Neural Networks from Scratch [Python]
« em: 21 de Outubro de 2020, 10:33 »

Machine Learning™ - Neural Networks from Scratch [Python]
Video: .mp4 (1280x720, 30 fps(r)) | Audio: aac, 44100 Hz, 2ch | Size: 1.06 GB
Genre: eLearning Video | Duration: 39 lectures (3 hour, 30 mins) | Language: English
 Learn Hopfield networks and neural networks (and back-propagation) theory and implementation in Python

What you'll learn

    Hopfield neural networks theory
    Hopfield neural network implementation in Python
    Neural neural networks theory
    Neural networks implementation
    Loss functions
    Gradient descent and back-propagation algorithms

Requirements

    Very basic Python

Description

This course is about artificial neural networks. Artificial intelligence and machine learning are getting more and more popular nowadays. In the beginning, other techniques such as Support Vector Machines outperformed neural networks, but in the 21st century neural networks again gain popularity. In spite of the slow training procedure, neural networks can be very powerful. Applications ranges from regression problems to optical character recognition and face detection.

Section 1:

    what are Hopfield neural networks

    modeling the human brain

    the big picture behind Hopfield neural networks

Section 2:

    Hopfield neural networks implementation

    auto-associative memory with Hopfield neural networks

Section 3:

    what are feed-forward neural networks

    modeling the human brain

    the big picture behind  neural networks

Section 4:

    feed-forward neural networks implementation

    gradient descent with back-propagation

In the first part of the course you will learn about the theoretical background of neural networks, later you will learn how to implement them in Python from scratch.

If you are keen on learning machine learning methods, let's get started!

Who this course is for:

    Beginner Python developers curious about data science

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction