* Cantinho Satkeys

Refresh History
  • sacana10: Tenham Um Feliz Ano De 2026
    01 de Janeiro de 2026, 12:35
  • FELISCUNHA: ghyt74   49E09B4F  e bom ano  4tj97u<z
    01 de Janeiro de 2026, 10:28
  • cereal killa:
    31 de Dezembro de 2025, 19:38
  • JPratas:
    31 de Dezembro de 2025, 18:41
  • j.s.: tenham um excelente ano de 2026 43e5r6 49E09B4F
    31 de Dezembro de 2025, 17:18
  • j.s.: dgtgtr a todos  49E09B4F
    31 de Dezembro de 2025, 17:17
  • FELISCUNHA: ghyt74   49E09B4F  e bom ano de 2026  4tj97u<z
    31 de Dezembro de 2025, 11:55
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 Continuação de Boas Festas vx4s5
    31 de Dezembro de 2025, 06:23
  • m1957: Um excelente ano de 2025 muito próspero!
    30 de Dezembro de 2025, 23:35
  • FELISCUNHA: dgtgtr  e continuação de boas festas  :smiles_natal:
    26 de Dezembro de 2025, 17:56
  • okapa:
    24 de Dezembro de 2025, 19:01
  • sacana10: A todos um feliz natal
    24 de Dezembro de 2025, 17:57
  • cereal killa: dgtgtr passei por ca para vos desejar feliz natal e familias  :smiles_natal:
    24 de Dezembro de 2025, 15:46
  • bruno mirandela: deso a todos um feliz natal
    24 de Dezembro de 2025, 14:31
  • FELISCUNHA: ghyt74   :34rbzg9:  e bom natal  :13arvoresnatalmagiagifs:
    24 de Dezembro de 2025, 10:15
  • tgh12: mikrotik
    24 de Dezembro de 2025, 07:49
  • tgh12: Spanish for Beginners: Spanish from 0 to Conversational
    24 de Dezembro de 2025, 04:57
  • JPratas: try65hytr Pessoal  4tj97u<z
    24 de Dezembro de 2025, 03:03
  • m1957: Para toda a equipa e membros deste fórum, desejo um Natal feliz e que o novo ano de 2026, seja muito próspero a todos os níveis.
    24 de Dezembro de 2025, 00:47
  • FELISCUNHA: Bom dia pessoal   :34rbzg9:
    22 de Dezembro de 2025, 10:35

Autor Tópico: Prediction Maps & Validation using Logistic Regression & ROC  (Lida 214 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Prediction Maps & Validation using Logistic Regression & ROC
« em: 10 de Outubro de 2020, 12:10 »

Prediction Maps & Validation using Logistic Regression & ROC
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 2 Hours | Lec: 25 | 332 MB
Genre: eLearning | Language: English

In the this course,i have shared complete process(A to Z) based on my published articles, abouthow to evaluate and compare the results of applying the multivariate logistic regression method in Hazard prediction mapping using GIS and R environment.

Since last decade,geographic information system (GIS) has beenfacilitated the development of new machine learning, data-driven, and empirical methods that reduce generalization errors. Moreover, it gives new dimensions for the integrated research field.

STAY FOCUSED: Logistic regression (binary classification, whether dependent factorwill occur (Y) in a particular places, or not) used for fitting a regression curve, and it is a special case of linear regression when the output variable is categorical, where we are using a log of odds as the dependent variable.

Why logistic regression is special? It takes a linear combination of features and applies a nonlinear function (sigmoid) to it, so it's a tiny instance of the neural network!

In the current course, I used experimental data that consist of : Independent factor Y (Landslide training data locations) 75 observations; Dependent factors X (Elevation, slope, NDVI, Curvature, and landcover)

I will explain the spatial correlation between; prediction factors, and the dependent factor. Also, how to find theautocorrelations between; the prediction factors, by considering their prediction importance or contribution. Finally, I willProduce susceptibility map using; R studio and ESRI ArcGISonly. Model predictionvalidation will be measured by most common statistical method of Area under (AUC) the ROCcurve.

At the the end ofthis course, you will be efficientlyable to process, predict and validateany sort of data related tonatural scienceshazard research, using advanced Logistic regression analysis capability.

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction