* Cantinho Satkeys

Refresh History
  • JPratas: try65hytr Pessoal  2dgh8i classic k7y8j0 yu7gh8
    Hoje às 03:38
  • j.s.: try65hytr a todos
    06 de Novembro de 2025, 19:11
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    02 de Novembro de 2025, 11:58
  • j.s.: tenham um excelente domingo  49E09B4F
    02 de Novembro de 2025, 11:27
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2025, 11:26
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    01 de Novembro de 2025, 11:04
  • JPratas: try65hytr Pessoal  2dgh8i classic k7y8j0 yu7gh8
    31 de Outubro de 2025, 04:19
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2025, 18:51
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    30 de Outubro de 2025, 11:38
  • haruri: Delta
    29 de Outubro de 2025, 07:54
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    25 de Outubro de 2025, 12:03
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 yu7gh8
    24 de Outubro de 2025, 03:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    19 de Outubro de 2025, 11:16
  • j.s.: tenham um excelente domingo  43e5r6 49E09B4F
    19 de Outubro de 2025, 10:32
  • j.s.: ghyt74 a todos  4tj97u<z
    19 de Outubro de 2025, 10:32
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    17 de Outubro de 2025, 12:08
  • JPratas: try65hytr Pessoal  4tj97u<z htg6454y k7y8j0
    17 de Outubro de 2025, 03:34
  • j.s.: dgtgtr a todos  4tj97u<z
    15 de Outubro de 2025, 15:12
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    15 de Outubro de 2025, 11:56
  • Radio TugaNet: boas tardes
    14 de Outubro de 2025, 13:14

Autor Tópico: Genetic Algorithm & Simulated Annealing in C++  (Lida 113 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 126305
  • Karma: +0/-0
Genetic Algorithm & Simulated Annealing in C++
« em: 06 de Outubro de 2020, 11:10 »

Genetic Algorithm & Simulated Annealing in C++
Video: .mp4 (1280x720, 30 fps(r)) | Audio: aac, 48000 Hz, 2ch | Size: 1.16 GB
Genre: eLearning Video | Duration: 20 lectures (1 hour, 49 mins) | Language: English
 Study these machine learning/optimization algorithms in continuous problems and the Travelling Salesperson Problem (TSP)

What you'll learn

    The genetic algorithm & simulated annealing in C++
    Genetic algorithm & simulated annealing on a continuous problem
    Genetic algorithm on the travelling salesperson problem (TSP)

Requirements

    Understand basic C++ and you should have a C++ IDE (any, I am using Visual Studio)
    An understanding of some mathematics
    An understanding of general algorithmics
    An interest in cool algorithms :)

Description

This online course is for students and software developers who want to level up their skills by learning an interesting optimization algorithm in C++.

You will learn two of the most famous AI algorithms by writing it in C++ from scratch, so we will not use any libraries.

The Genetic Algorithm is the most famous one in a class called metaheuristics or optimization algorithms. You will learn what optimization algorithms are, when to use them, and then you will solve two problems with the Genetic Algorithm(GA). The second most famous one is Simulated Annealing.

These problems are: a continuous problem(find the maximum/minimum of a continuous function) and the Travelling Salesperson Problem (TSP), where you have to find the shortest path in a network of cities.

Prerequisites:

    understand basic C++

    any C++ IDE (I am using Visual Studio)

    understanding of algorithms

    understand mathematics

I recommend that you do the examples yourself, instead of passively watching the videos.

Here's a brief outline of what you will learn:

    What optimization algorithms are

    Genetic Algorithm theory:

        General structure

        How crossover is done

        How mutation is done

    Genetic Algorithm on a continuous problem:

        Challenges particular to continuous problems: decoding the bits ("chromosomes") into a float value

        Crossover: tournament selection and single point crossover

        Mutation

    Genetic Algorithm on the TSP (Travelling Salesperson Problem):

        Creating a fitness function for the TSP

        Challenge particular to this problem: how to do crossover?

        Mutation

    Simulated Annealing:

        Basic Theory

        Optimizing Himmelblau's function

Sign up now and let's get started!

Who this course is for:

    Students and software developers who want to learn interesting algorithms
    Anyone interested in this metaheuristic algorithm

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction