* Cantinho Satkeys

Refresh History
  • j.s.: try65hytr a todos
    06 de Novembro de 2025, 19:11
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    02 de Novembro de 2025, 11:58
  • j.s.: tenham um excelente domingo  49E09B4F
    02 de Novembro de 2025, 11:27
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2025, 11:26
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    01 de Novembro de 2025, 11:04
  • JPratas: try65hytr Pessoal  2dgh8i classic k7y8j0 yu7gh8
    31 de Outubro de 2025, 04:19
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2025, 18:51
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    30 de Outubro de 2025, 11:38
  • haruri: Delta
    29 de Outubro de 2025, 07:54
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    25 de Outubro de 2025, 12:03
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 yu7gh8
    24 de Outubro de 2025, 03:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    19 de Outubro de 2025, 11:16
  • j.s.: tenham um excelente domingo  43e5r6 49E09B4F
    19 de Outubro de 2025, 10:32
  • j.s.: ghyt74 a todos  4tj97u<z
    19 de Outubro de 2025, 10:32
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    17 de Outubro de 2025, 12:08
  • JPratas: try65hytr Pessoal  4tj97u<z htg6454y k7y8j0
    17 de Outubro de 2025, 03:34
  • j.s.: dgtgtr a todos  4tj97u<z
    15 de Outubro de 2025, 15:12
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    15 de Outubro de 2025, 11:56
  • Radio TugaNet: boas tardes
    14 de Outubro de 2025, 13:14
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    11 de Outubro de 2025, 12:06

Autor Tópico: Analytics : Predictive Analysis in HR , Fraud and Marketing  (Lida 445 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 126273
  • Karma: +0/-0
Analytics : Predictive Analysis in HR , Fraud and Marketing
« em: 26 de Agosto de 2020, 16:50 »

Analytics : Predictive Analysis in HR , Fraud and Marketing
Video: .mp4 (1280x720, 30 fps(r)) | Audio: aac, 48000 Hz, 2ch | Size: 224 MB
Genre: eLearning Video | Duration: 36 lectures (1 hour, 8 mins) | Language: English
 Learn how different domains can apply predictive analytics .Quick guide for analytics & machine learning professionals.

What you'll learn

    predictive analytics
    HR Analytics
    Fraud Analytics
    Customer Analytics

Requirements

    No prerequisites

Description

PREDICTIVE ANALYTICS

This course gives you an understanding of the application of predictive analytics in your field of interest /domain. As you learn the tools (machine learning, statistics e.t.c) its important to understand the application part. Whether you are a manager, newbie, enthusiast, data scientist or a machine learning professional, this course will bring more light on how you can apply predictive analytics in your domain.

PREDICTIVE CUSTOMER ANALYTICS

    Analyzing customer behaviour

    From focusing on segments to focusing on the individual customer

    This has been made possible through technological advancement & data mining tools

    At the highest level of using customer data is predicting customer behaviour

    Why? Lots of data: social media, transaction history, demographic data, e.t.c

PREDICTIVE FRAUD ANALYTICS

    Using predictive analytics in fraud detection & prevention

    Move from detecting fraud after we have already made a loss to detecting fraud behaviour and thus prevent it from happening.

    With tech, we're trying to go into improving UX & UI such as fewer authentications but that comes with gaps for digital fraud hence the need for predictive fraud analytics.

PREDICTIVE HR ANALYTICS

    We are moving to a data-driven HR function

    Why? HR collects lots of data that can be used ( demographics, salary history, empl history, promotions data, churn data e.t.c )

    Moving from depiction HR dep as a cost function to a strategic partner in the business.

    Decisions like attracting, retaining and managing talent can be backed with data and to add more applying predictive analytics in those decisions.

Who this course is for:

    Data Analysts
    Data Scientists
    Business Analysts
    Managers
    Predictive Analytics Enthusiasts
    HR Professionals
    Marketers
    Fraud Analytics professionals

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction