* Cantinho Satkeys

Refresh History
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    18 de Outubro de 2024, 03:28
  • schmeagle: iheartradio
    17 de Outubro de 2024, 22:58
  • j.s.: dgtgtr a todos  4tj97u<z
    17 de Outubro de 2024, 18:09

Autor Tópico: Getting Started with Tensorflow 2.0  (Lida 112 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115487
  • Karma: +0/-0
Getting Started with Tensorflow 2.0
« em: 25 de Julho de 2020, 09:25 »

Getting Started with Tensorflow 2.0
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 3 Hours 9M | 387 MB
Genre: eLearning | Language: English

This course focuses on introducing the TensorFlow 2.0 framework - exploring the features and functionality that it offers for building and training neural networks. This course discusses how TensorFlow 2.0 differs from TensorFlow 1.x and how the...

TensorFlow has long been a powerful and widely used framework for building and training neural network models. In recent years though other frameworks such as PyTorch have gained popularity specifically due to their intuitive programming model which uses dynamic execution graphs. Now TensorFlow 2.0 offers all the ease of use of other frameworks along with TensorFlow's performance and functionality. TensorFlow's use of the Keras high-level API makes designing and training neural networks very straightforward while eager execution makes prototyping and debugging models simple. First, you will explore the basic features in TensorFlow 2.0 and how its programming model differs from TensorFlow 1.x versions. You will understand the basic working of a neural network and its active learning unit, the neuron. Next, you will compare and contrast static and dynamic computation graphs and understand the advantages and disadvantages of working with each kind of graph. You will get hands-on exploring execution in TensorFlow 2.0 in eager execution mode and harness the performance efficiencies of static graphs by using the tf.function decorator to decorate ordinary Python functions. You will then learn how a neural network is trained using gradient descent optimization and how the GradientTape() library in TensorFlow calculates gradients automatically during the training phase of your neural network model. Finally, you will learn how different APIs in Keras lend themselves to different use-cases. Sequential models consisting of layers stacked one on top of the other are simple and have long been supported by Keras. You will also explore the Functional API and model subclassing in Keras and then use these APIs to build regression as well as classification models When you're finished with this course, you will have the skills and knowledge to harness the computational power of the TensorFlow 2.0 framework and choose between the different model-building strategies available in Keras.
   

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction