* Cantinho Satkeys

Refresh History
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    Hoje às 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    18 de Outubro de 2024, 03:28
  • schmeagle: iheartradio
    17 de Outubro de 2024, 22:58
  • j.s.: dgtgtr a todos  4tj97u<z
    17 de Outubro de 2024, 18:09
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    17 de Outubro de 2024, 09:09

Autor Tópico: Real data science problems with Python  (Lida 289 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115351
  • Karma: +0/-0
Real data science problems with Python
« em: 02 de Março de 2020, 10:45 »

Real data science problems with Python
Video: .mp4 (1280x720, 30 fps(r)) | Audio: aac, 48000 Hz, 2ch | Size: 2.21 GB
Genre: eLearning Video | Duration: 31 lectures (7 hours, 43 mins) | Language: English

Practice machine learning and data science with real problems

What you'll learn

    Work with many ML techniques in real problems such as classification, image processing, regression
    Build neural networks for classification and regression
    Apply machine learning and data science to Audio Processing, Image detection, real time video, sentiment analysis and many more things

Requirements

    Some experience with Python
    General knowledge on Machine Learning, Statistics

Description

This course explores a variety of machine learning and data science techniques using real life datasets/images/audio collected from several sources. These realistic situations are much better than dummy examples, because they force the student to better think the problem, pre-process the data in a better way, and evaluate the performance of the prediction in different ways.

The datasets used here are from different sources such as Kaggle, US Data.gov, CrowdFlower, etc. And each lecture shows how to preprocess the data, model it using an appropriate technique, and compute how well each technique is working on that specific problem. Certain lectures contain also multiple techniques, and we discuss which technique is outperforming the other. Naturally, all the code is shared here, and you can contact me if you have any questions. Every lecture can also be downloaded, so you can enjoy them while travelling.

The student should already be familiar with Python and some data science techniques. In each lecture, we do discuss some technical details on each method, but we do not invest much time in explaining the underlying mathematical principles behind each method

Some of the techniques presented here are:

    Pure image processing using OpencCV
    Convolutional neural networks using Keras-Theano
    Logistic and naive bayes classifiers
    Adaboost, Support Vector Machines for regression and classification, Random Forests
    Real time video processing, Multilayer Perceptrons, Deep Neural Networks,etc.
    Linear regression
    Penalized estimators
    Clustering
    Principal components

The modules/libraries used here are:

    Scikit-learn
    Keras-theano
    Pandas
    OpenCV

Some of the real examples used here:

    Predicting the GDP based on socio-economic variables
    Detecting human parts and gestures in images
    Tracking objects in real time video
    Machine learning on speech recognition
    Detecting spam in SMS messages
    Sentiment analysis using Twitter data
    Counting objects in pictures and retrieving their position
    Forecasting London property prices
    Predicting whether people earn more than a 50K threshold based on US Census data
    Predicting the nuclear output of US based reactors
    Predicting the house prices for some US counties
    And much more...

The motivation for this course is that many students willing to learn data science/machine learning are usually suck with dummy datasets that are not challenging enough. This course aims to ease that transition between knowing machine learning, and doing real machine learning on real situations.

Who this course is for:

    Intermediate Python users with some knowledge on data science
    Students wanting to practice with real datasets
    Students who know some machine learning, but want to evaluate scikit-learn and Keras(Theano/Tensorflow) to real problems they will encounter in the analytics industry
   

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction