* Cantinho Satkeys

Refresh History
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana   4tj97u<z
    15 de Fevereiro de 2025, 16:34
  • j.s.: tenham um excelente fim de semana  49E09B4F
    14 de Fevereiro de 2025, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    14 de Fevereiro de 2025, 17:06
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    14 de Fevereiro de 2025, 11:24
  • cereal killa: ghyt74 pessoal  classic
    14 de Fevereiro de 2025, 10:08
  • JPratas: try65hytr Pessoal  classic k7y8j0 h7ft6l
    14 de Fevereiro de 2025, 03:52
  • JPratas: dgtgtr A Todos  4tj97u<z k7y8j0 yu7gh8
    13 de Fevereiro de 2025, 18:08
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    13 de Fevereiro de 2025, 11:32
  • j.s.: try65hytr a todos  4tj97u<z
    12 de Fevereiro de 2025, 21:00
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    08 de Fevereiro de 2025, 11:36
  • j.s.: tenham um excelente fim de semana  43e5r6 49E09B4F
    07 de Fevereiro de 2025, 20:23
  • j.s.: try65hytr a todos  4tj97u<z
    07 de Fevereiro de 2025, 20:23
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    07 de Fevereiro de 2025, 11:24
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    07 de Fevereiro de 2025, 04:15
  • j.s.: dgtgtr a todos  49E09B4F
    06 de Fevereiro de 2025, 14:24
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    05 de Fevereiro de 2025, 11:33
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    05 de Fevereiro de 2025, 02:35
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana   4tj97u<z
    01 de Fevereiro de 2025, 11:59
  • j.s.: tenham um excelente fim de semana  49E09B4F
    31 de Janeiro de 2025, 21:20
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Janeiro de 2025, 21:20

Autor Tópico: Fundamentals of Statistics and Visualization in Python [Video]  (Lida 144 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Moderador Global
  • ***
  • Mensagens: 118061
  • Karma: +0/-0

Fundamentals of Statistics and Visualization in Python
by Karen Yang

English | 2020 | h264, yuv420p, 1920x1080 | aac, 48000 Hz, 2 channels | 3h 15mn | 732 MB

Learn   
Basic concepts in statistics and data visualization
Use Python data visualization tools to perform data visualization
Apply probability to statistics with the use of Bayesian Inference, a powerful alternative to classical statistics
Calculate and build confidence intervals in Python
Run basic regressions focused on linear and multilinear data
Run hypothesis tests and perform Bayesian inference for effective analysis and visualization
Apply probability to statistics by updating beliefs
About   
Statistics and visualization in Python can be applied to a wide variety of areas; having these skills is crucial for data scientists. In this course, we explore several core statistical concepts to utilize data; construct confidence intervals in Python and assess the results; discover correlations; and update your beliefs using Bayesian Inference.
In this tutorial, you will discover how to use the Statsmodels, MatDescriptionlib, pandas, and Seaborn Python libraries for statistical data visualization. Follow along with author-Dr. Karen Yang, a seasoned data scientist and data engineer-to explore, learn, and strengthen your skills in fundamental statistics and visualization. This course utilizes the Jupyter Notebook environment to execute tasks.
By the end of this learning journey, you'll have developed a solid understanding of fundamental statistics and visualization concepts and will be confident enough to apply them to your data analysis projects.
Please note that prior knowledge of Python programming and some familiarity with pandas and NumPy are needed in order to get the best out of this course.

Features   
Discover and sharpen your skills in core statistics and visualization
Create vibrant data visualizations using Seaborn and MatDescriptionlib
Apply what you've learned from this course to your data analysis projects
   

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction