* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Bom dia pessoal   :34rbzg9:
    Hoje às 10:35
  • j.s.: :13arvoresnatalmagiagifs:
    21 de Dezembro de 2025, 19:01
  • j.s.: try65hytr a todos  :smiles_natal: :smiles_natal:
    21 de Dezembro de 2025, 19:01
  • FELISCUNHA: ghyt74  49E09B4F  e bom fim de semana  4tj97u<z
    20 de Dezembro de 2025, 11:20
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 classic dgf64y
    19 de Dezembro de 2025, 05:26
  • cereal killa: ghyt74 e boa semana de chuva e frio  RGG45wj erfb57j
    15 de Dezembro de 2025, 11:26
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    14 de Dezembro de 2025, 09:28
  • j.s.: tenham um excelente fim de semana com muitas comprinhas  :13arvoresnatalmagiagifs: sdfgsdg
    13 de Dezembro de 2025, 14:58
  • j.s.: dgtgtr a todos  :smiles_natal:
    13 de Dezembro de 2025, 14:57
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana   :34rbzg9:
    13 de Dezembro de 2025, 12:29
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i classic bve567o+
    12 de Dezembro de 2025, 05:34
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    07 de Dezembro de 2025, 11:23
  • j.s.: tenham um excelente domingo :smiles_natal:
    06 de Dezembro de 2025, 23:36
  • j.s.: try65hytr a todos :13arvoresnatalmagiagifs:
    06 de Dezembro de 2025, 23:36
  • FELISCUNHA: ghyt74 pessoal  :34rbzg9:
    05 de Dezembro de 2025, 11:58
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    05 de Dezembro de 2025, 04:18
  • cereal killa: try65hytr pessoaal  :13arvoresnatalmagiagifs:  RGG45wj
    04 de Dezembro de 2025, 18:51
  • Bobo2009: Os nova
    01 de Dezembro de 2025, 21:02
  • FELISCUNHA: Votos de um santo domingo para todo o auditório   4tj97u<z
    30 de Novembro de 2025, 12:06
  • j.s.: tenham um excelente fim de semana  :smiles_natal:
    29 de Novembro de 2025, 14:19

Autor Tópico: Artificial Intelligence Reinforcement Learning in Python (Updated)  (Lida 267 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129012
  • Karma: +0/-0

Artificial Intelligence: Reinforcement Learning in Python (Updated)
.MP4 | Video: 1280x720, 30 fps(r) | Audio: AAC, 48000 Hz, 2ch | 1.81 GB
Duration: 9.5 hours | Genre: eLearning | Language: English
Complete guide to Artificial Intelligence, prep for Deep Reinforcement Learning with Stock Trading Applications.

What you'll learn

    Apply gradient-based supervised machine learning methods to reinforcement learning
    Understand reinforcement learning on a technical level
    Understand the relationship between reinforcement learning and psychology
    Implement 17 different reinforcement learning algorithms

Requirements

    Calculus (derivatives)
    Probability
    Markov Models
    The Numpy Stack
    Have experience with at least a few supervised machine learning methods
    Gradient descent
    Good object-oriented programming skills

Description

When people talk about artificial intelligence, they usually don't mean supervised and unsupervised machine learning.

These tasks are pretty trivial compared to what we think of AIs doing - playing chess and Go, driving cars, and beating video games at a superhuman level.

Reinforcement learning has recently become popular for doing all of that and more.

Much like deep learning, a lot of the theory was discovered in the 70s and 80s but it hasn't been until recently that we've been able to observe first hand the amazing results that are possible.

In 2016 we saw Google's AlphaGo beat the world Champion in Go.

We saw AIs playing video games like Doom and Super Mario.

Self-driving cars have started driving on real roads with other drivers and even carrying passengers (Uber), all without human assistance.

If that sounds amazing, brace yourself for the future because the law of accelerating returns dictates that this progress is only going to continue to increase exponentially.

Learning about supervised and unsupervised machine learning is no small feat. To date I have over SIXTEEN (16!) courses just on those topics alone.

And yet reinforcement learning opens up a whole new world. As you'll learn in this course, the reinforcement learning paradigm is more different from supervised and unsupervised learning than they are from each other.

It's led to new and amazing insights both in behavioral psychology and neuroscience. As you'll learn in this course, there are many analogous processes when it comes to teaching an agent and teaching an animal or even a human. It's the closest thing we have so far to a true general artificial intelligence. What's covered in this course?

    The multi-armed bandit problem and the explore-exploit dilemma

    Ways to calculate means and moving averages and their relationship to stochastic gradient descent

    Markov Decision Processes (MDPs)

    Dynamic Programming

    Monte Carlo

    Temporal Difference (TD) Learning (Q-Learning and SARSA)

    Approximation Methods (i.e. how to plug in a deep neural network or other differentiable model into your RL algorithm)

    Project: Apply Q-Learning to build a stock trading bot

If you're ready to take on a brand new challenge, and learn about AI techniques that you've never seen before in traditional supervised machine learning, unsupervised machine learning, or even deep learning, then this course is for you.

See you in class!

Suggested Prerequisites:

    Calculus

    Probability

    Object-oriented programming

    Python coding: if/else, loops, lists, dicts, sets

    Numpy coding: matrix and vector operations

    Linear regression

    Gradient descent

TIPS (for getting through the course):

    Watch it at 2x.

    Take handwritten notes. This will drastically increase your ability to retain the information.

    Write down the equations. If you don't, I guarantee it will just look like gibberish.

    Ask lots of questions on the discussion board. The more the better!

    Realize that most exercises will take you days or weeks to complete.

                                                                                                                                                                                                   Write code yourself, don't just sit there and look at my code.

WHAT ORDER SHOULD I TAKE YOUR COURSES IN?:

    Check out the lecture "What order should I take your courses in?" (available in the Appendix of any of my courses, including the free Numpy course)

Who this course is for:

    Anyone who wants to learn about artificial intelligence, data science, machine learning, and deep learning
    Both students and professionals
       

               

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction