* Cantinho Satkeys

Refresh History
  • j.s.: tenham uma Santa e Feliz Páscoa  49E09B4F 49E09B4F 49E09B4F
    Hoje às 18:19
  • j.s.:
    Hoje às 18:19
  • j.s.: dgtgtr a todos  4tj97u<z 4tj97u<z
    Hoje às 18:15
  • FELISCUNHA: Uma santa sexta feira para todo o auditório  4tj97u<z
    18 de Abril de 2025, 11:12
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    18 de Abril de 2025, 03:28
  • cereal killa: try65hytr malta  classic 2dgh8i
    14 de Abril de 2025, 23:14
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    13 de Abril de 2025, 11:45
  • j.s.: e um bom domingo de Ramos  43e5r6 43e5r6
    11 de Abril de 2025, 21:02
  • j.s.: tenham um excelente fim de semana  49E09B4F
    11 de Abril de 2025, 21:01
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Abril de 2025, 21:00
  • JPratas: try65hytr  y5r6t Pessoal  classic k7y8j0
    11 de Abril de 2025, 04:15
  • JPratas: dgtgtr A Todos  4tj97u<z classic k7y8j0
    10 de Abril de 2025, 18:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    09 de Abril de 2025, 11:59
  • cereal killa: try65hytr pessoal  2dgh8i
    08 de Abril de 2025, 23:21
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  43e5r6
    06 de Abril de 2025, 11:13
  • cccdh: Ola para todos!
    04 de Abril de 2025, 23:41
  • j.s.: tenham um excelente fim de semana  49E09B4F
    04 de Abril de 2025, 21:10
  • j.s.: try65hytr a todos  4tj97u<z
    04 de Abril de 2025, 21:10
  • FELISCUNHA: dgtgtr pessoal  49E09B4F  bom fim de semana  4tj97u<z
    04 de Abril de 2025, 14:29
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    04 de Abril de 2025, 04:22

Autor Tópico: Logistic Regression, LDA and KNN in R for Predictive Modeling  (Lida 257 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 118935
  • Karma: +0/-0
Logistic Regression, LDA and KNN in R for Predictive Modeling
« em: 30 de Setembro de 2019, 18:15 »

Logistic Regression, LDA and KNN in R for Predictive Modeling
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 5 Hours | 2.52 GB
Genre: eLearning | Language: English

You're looking for a complete Classification modeling course that teaches you everything you need to create a Classification model in R, right? You've found the right Classification modeling course covering logistic regression, LDA and KNN in R studio!

The course is taught by Abhishek and Pukhraj. As managers in Global Analytics Consulting firm, we have helped businesses solve their business problem using machine learning techniques and we have used our experience to include the practical aspects of data analysis in this course. Teaching our students is our job and we are committed to it. If you have any questions about the course content, practice sheet or anything related to any topic, you can always post a question in the course or send us a direct message.

This course teaches you all the steps of creating a Linear Regression model, which is the most popular Machine Learning model, to solve business problems. We have covered the basic theory behind each concept without getting too mathematical about it so that you understand where the concept is coming from and how it is important. But even if you don't understand it, it will be okay if you learn how to run and interpret the result as taught in the practical lectures. We also look at how to quantify model's performance using confusion matrix, how categorical variables in the independent variables dataset are interpreted in the results, test-train split and how do we finally interpret the result to find out the answer to a business problem. By the end of this course, your confidence in creating a classification model in R will soar. You'll have a thorough understanding of how to use Classification modeling to create predictive models and solve business problems.

All the code and supporting files for this course are available at -
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.
             

               

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction