* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Uma santa sexta feira para todo o auditório  4tj97u<z
    18 de Abril de 2025, 11:12
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    18 de Abril de 2025, 03:28
  • cereal killa: try65hytr malta  classic 2dgh8i
    14 de Abril de 2025, 23:14
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    13 de Abril de 2025, 11:45
  • j.s.: e um bom domingo de Ramos  43e5r6 43e5r6
    11 de Abril de 2025, 21:02
  • j.s.: tenham um excelente fim de semana  49E09B4F
    11 de Abril de 2025, 21:01
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Abril de 2025, 21:00
  • JPratas: try65hytr  y5r6t Pessoal  classic k7y8j0
    11 de Abril de 2025, 04:15
  • JPratas: dgtgtr A Todos  4tj97u<z classic k7y8j0
    10 de Abril de 2025, 18:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    09 de Abril de 2025, 11:59
  • cereal killa: try65hytr pessoal  2dgh8i
    08 de Abril de 2025, 23:21
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  43e5r6
    06 de Abril de 2025, 11:13
  • cccdh: Ola para todos!
    04 de Abril de 2025, 23:41
  • j.s.: tenham um excelente fim de semana  49E09B4F
    04 de Abril de 2025, 21:10
  • j.s.: try65hytr a todos  4tj97u<z
    04 de Abril de 2025, 21:10
  • FELISCUNHA: dgtgtr pessoal  49E09B4F  bom fim de semana  4tj97u<z
    04 de Abril de 2025, 14:29
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    04 de Abril de 2025, 04:22
  • j.s.: try65hytr a todos  4tj97u<z
    03 de Abril de 2025, 21:00
  • migcontins: Quim Barreiros - A Esteticista (EP) 2025
    03 de Abril de 2025, 15:42
  • FELISCUNHA: ghyt74   49E09B4F  E bom fim de semana   4tj97u<z
    29 de Março de 2025, 10:06

Autor Tópico: Employing Ensemble Methods with scikit-learn  (Lida 222 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 118935
  • Karma: +0/-0
Employing Ensemble Methods with scikit-learn
« em: 14 de Agosto de 2019, 13:28 »

Employing Ensemble Methods with scikit-learn
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 2 Hours 14M | 203 MB
Genre: eLearning | Language: English

This course covers the theoretical and practical aspects of building ensemble learning solutions in scikit-learn; from random forests built using bagging and pasting to adaptive and gradient boosting and model stacking and hyperparameter tuning.

Even as the number of machine learning frameworks and libraries increases on a daily basis, scikit-learn is retaining its popularity with ease. In particular, scikit-learn features extremely comprehensive support for ensemble learning, an important technique to mitigate overfitting. In this course, Employing Ensemble Methods with scikit-learn, you will gain the ability to construct several important types of ensemble learning models. First, you will learn decision trees and random forests are ideal building blocks for ensemble learning, and how hard voting and soft voting can be used in an ensemble model. Next, you will discover how bagging and pasting can be used to control the manner in which individual learners in the ensemble are trained. Finally, you will round out your knowledge by utilizing model stacking to combine the output of individual learners. When you're finished with this course, you will have the skills and knowledge to design and implement sophisticated ensemble learning techniques using the support provided by the scikit-learn framework.
         

               
 
Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction