* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Uma santa sexta feira para todo o auditório  4tj97u<z
    18 de Abril de 2025, 11:12
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    18 de Abril de 2025, 03:28
  • cereal killa: try65hytr malta  classic 2dgh8i
    14 de Abril de 2025, 23:14
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    13 de Abril de 2025, 11:45
  • j.s.: e um bom domingo de Ramos  43e5r6 43e5r6
    11 de Abril de 2025, 21:02
  • j.s.: tenham um excelente fim de semana  49E09B4F
    11 de Abril de 2025, 21:01
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Abril de 2025, 21:00
  • JPratas: try65hytr  y5r6t Pessoal  classic k7y8j0
    11 de Abril de 2025, 04:15
  • JPratas: dgtgtr A Todos  4tj97u<z classic k7y8j0
    10 de Abril de 2025, 18:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    09 de Abril de 2025, 11:59
  • cereal killa: try65hytr pessoal  2dgh8i
    08 de Abril de 2025, 23:21
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  43e5r6
    06 de Abril de 2025, 11:13
  • cccdh: Ola para todos!
    04 de Abril de 2025, 23:41
  • j.s.: tenham um excelente fim de semana  49E09B4F
    04 de Abril de 2025, 21:10
  • j.s.: try65hytr a todos  4tj97u<z
    04 de Abril de 2025, 21:10
  • FELISCUNHA: dgtgtr pessoal  49E09B4F  bom fim de semana  4tj97u<z
    04 de Abril de 2025, 14:29
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    04 de Abril de 2025, 04:22
  • j.s.: try65hytr a todos  4tj97u<z
    03 de Abril de 2025, 21:00
  • migcontins: Quim Barreiros - A Esteticista (EP) 2025
    03 de Abril de 2025, 15:42
  • FELISCUNHA: ghyt74   49E09B4F  E bom fim de semana   4tj97u<z
    29 de Março de 2025, 10:06

Autor Tópico: Machine Learning Series Logistic Regression  (Lida 515 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 118839
  • Karma: +0/-0
Machine Learning Series Logistic Regression
« em: 06 de Maio de 2019, 12:41 »

Machine Learning Series: Logistic Regression
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 1 Hour | 192 MB
Genre: eLearning | Language: English

Dhiraj, a data scientist and machine learning evangelist, continues his teaching of machine learning algorithms by going into the logistic regression algorithm in this video series. Learn all about this powerful machine learning classification algorithm in this video series containing these 8 topics:

Introducing Logistic Regression. This first video in the logistic regression series introduces this powerful classification algorithm. The logistic regression algorithm is used when the dependent variable or target variable is categorical. Simple Logistic Regression and Multinomial Logistic Regression are explained. Learn about the five important assumptions of logistic regression. Learn about the Sigmoid function.
Contrasting Logistic Regression with Linear Regression. This second video in the logistic regression series compares logistic regression with linear regression in terms of their purpose, use cases, equations, error minimizations, and assumptions.
Preprocessing Data in Logistic Regression. This third video in the logistic regression series covers the four ways of preprocessing data before performing logistic regression: missing data handling, categorical data handling, splitting into train and test set, and feature scaling. This video contains a hands-on component so you can follow along and preprocess the data set using all four approaches.
Using Seaborn for Data Visualization. This fourth video in the logistic regression series explains how to perform data visualization using Seaborn, which is a Python data visualization library based on matDescriptionlib. Seaborn provides the high-level interface to create statistical graphs. This video contains a hands-on component so you can follow along and create data visualization graphs.
Creating a Logistic Model. This fifth video in the logistic regression series explains how to create a logistic model using the Titantic dataset. The hands-on part of this video uses sklearn's LogisticRegression class.
Predicting Output from the Logistic Model. This sixth video in the logistic regression series explains how to predict the output from a logistic model, using the scikit-learn's predict() function.
Checking the Accuracy of a Logistic Model. This seventh video in the logistic regression series explains how to check the accuracy of a logistic model.
Using the Confusion Matrix to Determine Model Performance. This eighth video in the logistic regression series explains how to gauge the performance of a logistic model using the confusion matrix.
 

               

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction