* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    02 de Novembro de 2025, 11:58
  • j.s.: tenham um excelente domingo  49E09B4F
    02 de Novembro de 2025, 11:27
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2025, 11:26
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    01 de Novembro de 2025, 11:04
  • JPratas: try65hytr Pessoal  2dgh8i classic k7y8j0 yu7gh8
    31 de Outubro de 2025, 04:19
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2025, 18:51
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    30 de Outubro de 2025, 11:38
  • haruri: Delta
    29 de Outubro de 2025, 07:54
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    25 de Outubro de 2025, 12:03
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 yu7gh8
    24 de Outubro de 2025, 03:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    19 de Outubro de 2025, 11:16
  • j.s.: tenham um excelente domingo  43e5r6 49E09B4F
    19 de Outubro de 2025, 10:32
  • j.s.: ghyt74 a todos  4tj97u<z
    19 de Outubro de 2025, 10:32
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    17 de Outubro de 2025, 12:08
  • JPratas: try65hytr Pessoal  4tj97u<z htg6454y k7y8j0
    17 de Outubro de 2025, 03:34
  • j.s.: dgtgtr a todos  4tj97u<z
    15 de Outubro de 2025, 15:12
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    15 de Outubro de 2025, 11:56
  • Radio TugaNet: boas tardes
    14 de Outubro de 2025, 13:14
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    11 de Outubro de 2025, 12:06
  • JPratas: try65hytr Pessoal  49E09B4F 2dgh8i k7y8j0 yu7gh8
    10 de Outubro de 2025, 03:59

Autor Tópico: Land Cover Classification in Google Earth Engine  (Lida 76 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 126169
  • Karma: +0/-0
Land Cover Classification in Google Earth Engine
« em: 09 de Maio de 2025, 12:05 »
Land Cover Classification in Google Earth Engine


Published 5/2025
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 1h 9m | Size: 1 GB

Start applying machine learning for remote sensing


What you'll learn
Get Theoretical Knowledge of Random Forest Algorithm
Proficiency in Google Earth Engine
Training Data Development
Land Cover Mapping
Accuracy Assessment
Requirements
A free Google Earth Engine account (enrollment instructions provided)
Access to a computer with a reliable internet connection
Description
Welcome to an in-depth and rigorously structured course designed to equip learners with the expertise to perform land cover classification using Random Forest within Google Earth Engine (GEE). This course is tailored for students, geospatial professionals, environmental scientists, and researchers seeking to harness satellite imagery for precise land cover mapping. Through a comprehensive case study in Çumra District, Konya, Türkiye, participants will develop proficiency in classifying land into four categories-Water, Vegetation, Urban, and Bare Land-utilizing state-of-the-art machine learning techniques and cloud-based geospatial platforms. No prior experience in coding or remote sensing is required, as this course provides a systematic progression from foundational concepts to advanced applications, ensuring accessibility for beginners and value for experienced learners.Upon completion, you will produce a professional-grade land cover map of Çumra District, demonstrating mastery of Random Forest and GEE. You will gain the ability to preprocess satellite imagery, develop and validate machine learning models, and interpret geospatial data, skills highly valued in academia and industries such as environmental management, urban planning, and agricultural monitoring.Embark on a transformative learning journey to master land cover classification with Random Forest in Google Earth Engine. This course offers a unique opportunity to develop cutting-edge skills through a practical, real-world project in Çumra District, equipping you to address global environmental challenges. Enroll now to gain expertise in geospatial analysis, contribute to sustainable development. Begin your journey today and unlock the potential of satellite imagery to map and understand our world.
Who this course is for
Undergraduate and graduate students in environmental science, geography, or related fields seeking practical geospatial skills
Geospatial professionals aiming to integrate machine learning and GEE into their workflows.
Researchers and analysts interested in leveraging satellite imagery for environmental and urban studies
Homepage:
Código: [Seleccione]
https://www.udemy.com/course/land-cover-classification-in-google-earth-engine/
Screenshots


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/270f193100a13fcc4f40125d8494cf86/glrrb.Land.Cover.Classification.in.Google.Earth.Engine.part1.rar.html
https://rapidgator.net/file/004a327bbc98a61254a964471ca04a48/glrrb.Land.Cover.Classification.in.Google.Earth.Engine.part2.rar.html

nitroflare.com:
Citar
https://nitroflare.com/view/2C8E02859B4AD56/glrrb.Land.Cover.Classification.in.Google.Earth.Engine.part1.rar
https://nitroflare.com/view/77F7D2E24A10FEB/glrrb.Land.Cover.Classification.in.Google.Earth.Engine.part2.rar