* Cantinho Satkeys

Refresh History
  • j.s.: tenham uma Santa e Feliz Páscoa  49E09B4F 49E09B4F 49E09B4F
    Hoje às 18:19
  • j.s.:
    Hoje às 18:19
  • j.s.: dgtgtr a todos  4tj97u<z 4tj97u<z
    Hoje às 18:15
  • FELISCUNHA: Uma santa sexta feira para todo o auditório  4tj97u<z
    18 de Abril de 2025, 11:12
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    18 de Abril de 2025, 03:28
  • cereal killa: try65hytr malta  classic 2dgh8i
    14 de Abril de 2025, 23:14
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    13 de Abril de 2025, 11:45
  • j.s.: e um bom domingo de Ramos  43e5r6 43e5r6
    11 de Abril de 2025, 21:02
  • j.s.: tenham um excelente fim de semana  49E09B4F
    11 de Abril de 2025, 21:01
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Abril de 2025, 21:00
  • JPratas: try65hytr  y5r6t Pessoal  classic k7y8j0
    11 de Abril de 2025, 04:15
  • JPratas: dgtgtr A Todos  4tj97u<z classic k7y8j0
    10 de Abril de 2025, 18:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    09 de Abril de 2025, 11:59
  • cereal killa: try65hytr pessoal  2dgh8i
    08 de Abril de 2025, 23:21
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  43e5r6
    06 de Abril de 2025, 11:13
  • cccdh: Ola para todos!
    04 de Abril de 2025, 23:41
  • j.s.: tenham um excelente fim de semana  49E09B4F
    04 de Abril de 2025, 21:10
  • j.s.: try65hytr a todos  4tj97u<z
    04 de Abril de 2025, 21:10
  • FELISCUNHA: dgtgtr pessoal  49E09B4F  bom fim de semana  4tj97u<z
    04 de Abril de 2025, 14:29
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    04 de Abril de 2025, 04:22

Autor Tópico: The Geometry of Walker Manifolds  (Lida 134 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online oaxino

  • Moderador Global
  • ***
  • Mensagens: 31428
  • Karma: +0/-0
The Geometry of Walker Manifolds
« em: 15 de Novembro de 2022, 11:58 »


English | PDF | 2009 | 177 Pages | ISBN : 1598298194 | 1.2 MB


This book, which focuses on the study of curvature, is an introduction to various aspects of pseudo-Riemannian geometry. We shall use Walker manifolds (pseudo-Riemannian manifolds which admit a non-trivial parallel null plane field) to exemplify some of the main differences between the geometry of Riemannian manifolds and the geometry of pseudo-Riemannian manifolds and thereby illustrate phenomena in pseudo-Riemannian geometry that are quite different from those which occur in Riemannian geometry, i.e. for indefinite as opposed to positive definite metrics. Indefinite metrics are important in many diverse physical contexts: classical cosmological models (general relativity) and string theory to name but two. Walker manifolds appear naturally in numerous physical settings and provide examples of extremal mathematical situations as will be discussed presently. To describe the geometry of a pseudo-Riemannian manifold, one must first understand the curvature of the manifold. We shall analyze a wide variety of curvature properties and we shall derive both geometrical and topological results. Special attention will be paid to manifolds of dimension 3 as these are quite tractable. We then pass to the 4 dimensional setting as a gateway to higher dimensions. Since the book is aimed at a very general audience (and in particular to an advanced undergraduate or to a beginning graduate student), no more than a basic course in differential geometry is required in the way of background. To keep our treatment as self-contained as possible, we shall begin with two elementary chapters that provide an introduction to basic aspects of pseudo-Riemannian geometry before beginning on our study of Walker geometry. An extensive bibliography is provided for further reading.

DOWNLOAD

katfile.com:
Citar
https://katfile.com/b744gf8ggocs/uiues.The.Geometry.of.Walker.Manifolds.pdf.html

rapidgator.net:
Citar
https://rapidgator.net/file/cfe2ae7aa95c68fe6819a59dd2691b23/uiues.The.Geometry.of.Walker.Manifolds.pdf.html

nitroflare.com:
Citar
https://nitroflare.com/view/B1F9EC3389659D6/uiues.The.Geometry.of.Walker.Manifolds.pdf