* Cantinho Satkeys

Refresh History
  • Gerard: j'espère que tous sont en train d'être bem
    Hoje às 13:28
  • Gerard: Boas tardes
    Hoje às 13:26
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana   4tj97u<z
    Hoje às 11:51
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    Hoje às 03:29
  • yaro-82: 1994
    07 de Setembro de 2025, 16:49
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  43e5r6
    07 de Setembro de 2025, 10:52
  • j.s.: tenham um excelente fim de semana  49E09B4F
    06 de Setembro de 2025, 17:07
  • j.s.: dgtgtr a todos  4tj97u<z
    06 de Setembro de 2025, 17:07
  • FELISCUNHA: Boa tarde pessoal  49E09B4F bom fim de semana  htg6454y
    05 de Setembro de 2025, 14:53
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    05 de Setembro de 2025, 03:10
  • cereal killa: dgtgtr pessoal  4tj97u<z
    03 de Setembro de 2025, 15:26
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    01 de Setembro de 2025, 11:36
  • j.s.: de regresso a casa  535reqef34
    31 de Agosto de 2025, 20:21
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Agosto de 2025, 20:21
  • FELISCUNHA: ghyt74   49E09B4e bom fim de semana  4tj97u<z
    30 de Agosto de 2025, 11:48
  • henrike: try65hytr     k7y8j0
    29 de Agosto de 2025, 21:52
  • JPratas: try65hytr Pessoal 4tj97u<z 2dgh8i classic k7y8j0
    29 de Agosto de 2025, 03:57
  • cereal killa: dgtgtr pessoal  2dgh8i
    27 de Agosto de 2025, 12:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    24 de Agosto de 2025, 11:26
  • janstu10: reed
    24 de Agosto de 2025, 10:52

Autor Tópico: Mastering Data Visualization with Python 2021  (Lida 127 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 124987
  • Karma: +0/-0
Mastering Data Visualization with Python 2021
« em: 03 de Março de 2021, 15:16 »

Mastering Data Visualization with Python 2021
MP4 | h264, 1280x720 | Lang: English | Audio: aac, 44100 Hz | 9h 26m | 3.85 GB
Visualize data using pandas, matDescriptionlib ans seaborn libraries for data analysis and data science

What you'll learn
Understand what Descriptions are suitable for a type of data you have
Visualize data by creating various graphs using pandas, matDescriptionlib and seaborn libraries
Requirements
Some basic knowledge of Python is expected. However this course does include a quick overview of Python knowledge required for this course.
Description
This course will help you draw meaningful knowledge from the data you have.

Three systems of data visualization in R are covered in this course:

A. Pandas B. MatDescriptionlib C. Seaborn

A. Types of graphs covered in the course using the pandas package:

Time-series: Line Description

Single Discrete Variable: Bar Description, Pie Description

Single                                                                                                                                                                                                       Continuous Variable: Histogram, Density or KDE Description, Box-Whisker Description

Two Continuous Variable: Scatter Description

Two Variable: One Continuous, One Discrete: Box-Whisker Description

B. Types of graphs using MatDescriptionlib library:

Time-series: Line Description

Single Discrete Variable: Bar Description, Pie Description

Single Continuous Variable: Histogram, Density or KDE Description, Box-Whisker Description

Two Continuous Variable: Scatter Description

In addition, we will cover subDescriptions as well, where multiple axes can be Descriptionted on a single figure.

C. Types of graphs using Seaborn library:

In this we will cover three broad categories of Descriptions:

relDescription (Relational Descriptions): Scatter Description and Line Description

disDescription (Distribution Descriptions): Histogram, KDE, ECDF and Rug Descriptions

catDescription (Categorical Descriptions): Strip Description, Swarm Description, Box Description, Violin Description, Point Description and Bar Description

In addition to these three categories, we will cover these three special kinds of Descriptions: Joint Description, Pair Description and Linear Model Description

In the end, we will discuss the customization of Descriptions by creating themes based on the style, context, colour palette and font.

Who this course is for:
Data Science, Six Sigma and other professionals interested in data visualization
Professionals interested in creating publication quality Descriptions
Professionals who are not happy with the Descriptions created in MS Excel, and see them as dull and boring

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction