* Cantinho Satkeys

Refresh History
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    Hoje às 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    Hoje às 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    18 de Outubro de 2024, 03:28

Autor Tópico: Analytics : Predictive Analysis in HR , Fraud and Marketing  (Lida 375 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115487
  • Karma: +0/-0
Analytics : Predictive Analysis in HR , Fraud and Marketing
« em: 26 de Agosto de 2020, 16:50 »

Analytics : Predictive Analysis in HR , Fraud and Marketing
Video: .mp4 (1280x720, 30 fps(r)) | Audio: aac, 48000 Hz, 2ch | Size: 224 MB
Genre: eLearning Video | Duration: 36 lectures (1 hour, 8 mins) | Language: English
 Learn how different domains can apply predictive analytics .Quick guide for analytics & machine learning professionals.

What you'll learn

    predictive analytics
    HR Analytics
    Fraud Analytics
    Customer Analytics

Requirements

    No prerequisites

Description

PREDICTIVE ANALYTICS

This course gives you an understanding of the application of predictive analytics in your field of interest /domain. As you learn the tools (machine learning, statistics e.t.c) its important to understand the application part. Whether you are a manager, newbie, enthusiast, data scientist or a machine learning professional, this course will bring more light on how you can apply predictive analytics in your domain.

PREDICTIVE CUSTOMER ANALYTICS

    Analyzing customer behaviour

    From focusing on segments to focusing on the individual customer

    This has been made possible through technological advancement & data mining tools

    At the highest level of using customer data is predicting customer behaviour

    Why? Lots of data: social media, transaction history, demographic data, e.t.c

PREDICTIVE FRAUD ANALYTICS

    Using predictive analytics in fraud detection & prevention

    Move from detecting fraud after we have already made a loss to detecting fraud behaviour and thus prevent it from happening.

    With tech, we're trying to go into improving UX & UI such as fewer authentications but that comes with gaps for digital fraud hence the need for predictive fraud analytics.

PREDICTIVE HR ANALYTICS

    We are moving to a data-driven HR function

    Why? HR collects lots of data that can be used ( demographics, salary history, empl history, promotions data, churn data e.t.c )

    Moving from depiction HR dep as a cost function to a strategic partner in the business.

    Decisions like attracting, retaining and managing talent can be backed with data and to add more applying predictive analytics in those decisions.

Who this course is for:

    Data Analysts
    Data Scientists
    Business Analysts
    Managers
    Predictive Analytics Enthusiasts
    HR Professionals
    Marketers
    Fraud Analytics professionals

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction