* Cantinho Satkeys

Refresh History
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    01 de Setembro de 2025, 11:36
  • j.s.: de regresso a casa  535reqef34
    31 de Agosto de 2025, 20:21
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Agosto de 2025, 20:21
  • FELISCUNHA: ghyt74   49E09B4e bom fim de semana  4tj97u<z
    30 de Agosto de 2025, 11:48
  • henrike: try65hytr     k7y8j0
    29 de Agosto de 2025, 21:52
  • JPratas: try65hytr Pessoal 4tj97u<z 2dgh8i classic k7y8j0
    29 de Agosto de 2025, 03:57
  • cereal killa: dgtgtr pessoal  2dgh8i
    27 de Agosto de 2025, 12:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    24 de Agosto de 2025, 11:26
  • janstu10: reed
    24 de Agosto de 2025, 10:52
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    23 de Agosto de 2025, 12:03
  • joca34: cd Vem dançar Kuduro Summer 2025
    22 de Agosto de 2025, 23:07
  • joca34: cd Kizomba Mix 2025
    22 de Agosto de 2025, 23:06
  • JPratas: try65hytr A Todos e Boas Férias 4tj97u<z htg6454y k7y8j0
    22 de Agosto de 2025, 04:22
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    21 de Agosto de 2025, 11:15
  • cereal killa: dgtgtr e boas ferias  r4v8p 535reqef34
    18 de Agosto de 2025, 13:04
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    18 de Agosto de 2025, 11:31
  • joca34: bom dia alguem tem es cd Portugal emigrante 2025
    17 de Agosto de 2025, 05:46
  • j.s.: bom fim de semana  49E09B4F
    16 de Agosto de 2025, 20:47
  • j.s.: try65hytr a todos  4tj97u<z
    16 de Agosto de 2025, 20:47
  • Itelvo: Bom dia pessoal
    15 de Agosto de 2025, 14:02

Autor Tópico: Causal AI, Video Edition  (Lida 56 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 124630
  • Karma: +0/-0
Causal AI, Video Edition
« em: 20 de Maio de 2025, 11:06 »


Published: 2/2025
Duration: 15h 40m | Video: .MP4, 1920x1080 30 fps | Audio: AAC, 44.1kHz, 2ch | Size: 2.29 GB
Genre: eLearning | Language: English


In Video Editions the narrator reads the book while the content, figures, code listings, diagrams, and text appear on the screen. Like an audiobook that you can also watch as a video.
Build AI models that can reliably deliver causal inference.
How do you know what might have happened, had you done things differently? Causal AI gives you the insight you need to make predictions and control outcomes based on causal relationships instead of pure correlation, so you can make precise and timely interventions. Causal AI is a practical introduction to building AI models that can reason about causality.
In Causal AI you will learn how to
Build causal reinforcement learning algorithms
Implement causal inference with modern probabilistic machine tools such as PyTorch and Pyro
Compare and contrast statistical and econometric methods for causal inference
Set up algorithms for attribution, credit assignment, and explanation
Convert domain expertise into explainable causal models
Author Robert Osazuwa Ness, a leading researcher in causal AI at Microsoft Research, brings his unique expertise to this cutting-edge guide. His clear, code-first approach explains essential details of causal machine learning that are hidden in academic papers. Everything you learn can be easily and effectively applied to industry challenges, from building explainable causal models to predicting counterfactual outcomes.
About the Technology
Traditional ML models can't answer causal questions like, "Why did that happen?" or, "What factors should I change to get a particular outcome?" This book blends advanced statistical methods, computational techniques, and new algorithms to create machine learning systems that automate the process of causal inference.
About the Book
Causal AI introduces the tools, techniques, and algorithms of causal reasoning for machine learning. This unique book masterfully blends Bayesian and probabilistic approaches to causal inference with practical hands-on examples in Python. Along the way, you'll learn to integrate causal assumptions into deep learning architectures, including reinforcement learning and large language models. You'll also use PyTorch, Pyro, and other ML libraries to scale up causal inference.
What's Inside
End-to-end causal inference with DoWhy
Deep Bayesian causal generative AI models
A code-first tour of the do-calculus and Pearl's causal hierarchy
Code for fine-tuning causal large language models
Screenshots


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/1611d85121ae3094d204bbbff22cba2f/iwcru.Causal.AI.Video.Edition.part1.rar.html
https://rapidgator.net/file/e7b315aa1f691f7024595b7bb4db39de/iwcru.Causal.AI.Video.Edition.part2.rar.html
https://rapidgator.net/file/c667691db0c07946f152d616f63d2da7/iwcru.Causal.AI.Video.Edition.part3.rar.html

nitroflare.com:
Citar
https://nitroflare.com/view/09E213D2A96B4E0/iwcru.Causal.AI.Video.Edition.part1.rar
https://nitroflare.com/view/5AAF8FB16376A2C/iwcru.Causal.AI.Video.Edition.part2.rar
https://nitroflare.com/view/C602ADB4843E157/iwcru.Causal.AI.Video.Edition.part3.rar